JPL D-7669, Part 2

Planetary Data System
Standards Reference

June 15, 2001
Version 3.4

PDS
BN

Planetary Data System

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Table of Contents i

Chapter 1.
11
1.2
1.3
14
15
1.6
1.7

Chapter 2.
2.1
2.2
2.3
24
25
2.6
2.7

Chapter 3.
31
3.2
3.3
34
35
3.6
3.7
3.8
39

Chapter 4.
4.1

Chapter 5.
51
511
512
52
521
522
523
5.3
531

PDS Standards Reference
Table of Contents

a8 0o [8 T o o RS PRRPRPR 1-1
DY BT r= W o] [T o RS 1-1
PUIMPOSE. ...t et reeeesnr e e e e s areeeeanns 1-1
SCOPI. . ettt ettt ettt e et e eie beeeteeease e e e bt e e be e e aaee e £eabeeeaneeeareeaneeaanneennne fen 1-2
AUIENCE......eiiiecieee e ettt s sbeesseesseeseeeteenaeenreens 1-2
Document Organi ZatiONcoceereeeieeieenis ceesieeseeseeseeseeeseeesees cesseens 1-2
Other Reference DOCUMENTS........c.ccviierrieeiieniens ceeeriee e e 1-2
Online Document Availability........ccooeiiiiiiiiiiis e 1-3
Cartographic Standards...........ccceeiiiiiieie e 2-1
Inertial Reference Frame, Time Tags and UNitS........cccocceeveeieeneenns e 2-1
Spin Axes and Prime MeridianS.........ccoooeeieenienieens veenieesie e 2-1
Reference CoOrdiNates...........coouviieeiieeiiens creeriee e ceeeeenne 2-2
RINGS e e te et e reenae e tea 2-3
REfErence SUIMaCe.oooieiie e e e 2-5
MEP RESOIULION......coiiiiiiiiieie et ettt cebeeeeeseeesaee e 2-5
REFEIENCES ..ot e et 2-5
DATA_TYPE Values and Data File Storage Formats............cccc....... 31
Data El@mMeNtS........ooiiieeieieriit et e nree e 31
Dala TYPES. ..ttt et ceerire e e e e e 31
BiNary INEEENS ..o ettt ceteereeseeesaee e 35
Signed vs. UNSIgNed INEEJEIS.......ccveiieerieeiieiienis eeeiie e 35
Floating Point FOrMAELS...........ccoouiiiiiiiiiiens e eeeieene 35
Bit SING DALA.ccuieieieiiieiieeiies e cesreesseeeeeeaeenes 3-6
CharaCter Dala........ccooeereriiiiiieiiies cieerieeiee e see e see s eeeeeenseesseesaeens 3-6
Format SPeCifiCatioNS.cooeiiiiiiiiiicies e e 3-6
Internal Representations of Data TYPES......cccvveieerieriieniiieies evieeiieeniens 3-6
Data Objects and Products...........ccceeeeeiiieeiiiie e 4-1
Data Product File Configurations............ccuveiierineies evieenieesieesiee e 4-2
Data Product LabelS......coocveiiiieeeeee e 51
Format of PDS LaDE!S........cooiiiiiiiiiieie e e 51

Labeling MEthOdS.........oouiiiiiiieieies e criee e 51

Label FOrMaL........cooiiiiiieiieieie e e 54
Data Product Label CONteNntcooeeveeririiieniis eeieenieesiee e s 55

Attached and Detached Labels...........ccooeiiiiiiiiins v 55

Combined Detached LabelS.........ccooviiiiiiiies e 5-7

Minimal LabelS.......oooiiiiiiiieiet e e 5-9
Detailed Label ContentS DesCription..........cocvecvereeneenes covieenenseesnnns 5-11

Label Standards [dentifierS ... et 5-11

5.3.2
5.3.3
5.34
5.35
5.3.6
5.3.7
5.4

Chapter 6.

6.1
6.2
6.3
6.4
6.4.1
6.4.2

Chapter 7.

7.1
7.2
721
7.2.2
7.3
731
7.3.2

Chapter 8.

8.1
8.2
8.3
8.4
8.5

Chapter 9.

9.1

911
9.1.2
9.2

9.21
9.2.2
9.23
9.24
9.3

931
9.3.2
9.3.3

Table of Contents

File Characteristic Data Elements.........c.cccovvriiiinns cevvieenennienens 5-12
Data ObjeCt POINLEIScoiieiiiiieeieerieeie et ceneeens 5-14
Data ldentification Elements..........ccccoviriiiiniis cevieeee e 5-17
Descriptive Data Elements...........ccoveiieiiniies o 5-19
Data Object DefiNitioNS.........ccoiveiiiriiieiiees e e 5-19
ENd STALEMENT ... e e 5-19
Syntax for Element ValUEs..........cccoveeiiiiiiiiies e o 5-20
Data Set/Data Set Collection Contents and Naming...........ccccceeenneee. 6-1
Data Set/Data Set Collection CONtENESccceeveeriierieenienns ceereerienens 6-2
Data Set Naming and [dentifiCation..........coccueveeieereens cevveeneenee e 6-3
Data Set Collection Naming and Identification...........cccceceeieeieens v 6-4
Description of Name and ID COMPONENtS........ccoeeveererneenienns veeereennens 6-6
Format Restrictions on NAME- and ID-Class Elements..................... 6-6
Standard Acronyms and Abbreviations............cccoceveiinnies ceviieniene 6-7
Date/ TimMeE FOIrMAL.......eeiiiieie e 7-1
DA/ TIMES ..ttt ettt cesseesaeesseesneeeeeenees 7-1
DALES.... .t e e 2ea 7-2
Conventional DELES.........couerierriieiieries crreeree e reesseeenes 7-2
NALVE DELESooivieiieiieeiee e iie ettt cesreesaeeseeeeeenes 7-2
LIS T PRSPPI 7-2
Conventional TIMES........cociiieeiieiieriees ceeeie et ens eeeneeenes 7-2
NBLIVE TIMES....tiiiieitie et rie eertee st e e re et esres cesseesseesneeeeeenes 7-3
Directory Typesand NamMIiNgG........ccceeuveeririeeaiiee e seeeeseeeeseee e 8-1
Standard DireCtory NaMES.........coocuviiirieeiieries et e 8-1
Formation of DireCtory NaIMES.........ccoieireriieeiiees ceeeieeiee e seee e e 8-2
Path Formation Standard............cccoceeiieiinnies covieiieeeeee e ceiees 8-4
TAPE VOIUMES......coiiiiii et ettt eeeeeeeesaeesseesneas 8-4
Exceptions to These Standards..........ccoveeveeiieniiens cevrieeieesee e 8-4
DOCUMENTS ... e e e e 9-1
PDS Objects fOr DOCUMENES......cccveiiieiiiisiieeieeie eeieenieesieesiee e seeeees s 9-2
TEXT OBJECES. ..ccveeiie ettt ettt eeereesseesseesaeas 9-2
DOCUMENT ODJECLS.....ocviiieeiieiiie e et seeenes 9-2
Document Format DetailScoccoeieeiiiiiiiiies e e 9-4
e AN O | 1= S 9-4
ASCII Text Containing Markup Language...........ccccceeieereenenns veernen 9-5
NON-ASCIH FOIMELS.......ooiiiiiiiiiiieeiiee et eeeeeeens 9-6
LV 2= o 7 4o o HO RPN 9-6
EXAMPIES....ceee e e e 9-6
Simple Attached [abel (Plain ASCIH TeXt).....coiiviieriieiieieens e 9-6
Complex Detached Label (Two Document Versions)..........ccceceeeueeee. 9-6

Complex Detached Label (Documents Plus Graphics)..........cccceeuvee.. 9-7

Table of Contents ii

Chapter 10.
10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.3

Chapter 11.
11.1
1111
11.1.2
11.2
11.21
11.2.2
11.3
114

Chapter 12.
12.1
1211
12.1.2
12.2
12.3
12.3.1
12.3.2
12.3.3
12.34
12.35
124
1241
12.4.2
12.4.3
1244
12.4.5
125
1251
125.2
1253
1254
1255
12.5.6
12.6
12.7

File Specification and Naming.........ccocceerrierniiee e 10-1
File Specification Standards............ccoveerienirnies covernieneeeeseee e 10-1
1SO 9660 Level 1 SpeCifiCation........ccocvereereerennns ceereesieseeeeeeees 10-2
1SO 9660 Level 2 SPeCifiCation........ccoeveereereerienis ceeree e see e 10-2
Reserved Directory Names, File Names and Extensions..................... 10-3
Reserved DireCtory NaMES.........cocvieeiienieiies ceeeeieeiee e 10-3
Reserved FIle NAMES........c.ooiiieeeriees e ceieeas 10-3
ReSErVed EXTENSIONScoiiiiiiiieeieeieeie oot sieesiee e ceneeens 10-3
Guidelines for Naming Sequential Files..........ccooeviiiiiiiies e, 10-5
Media Formatsfor Data Submission and Archive...........ccccocuee...e. 11-1
CD-ROM ReCOMMENELIONS.......c.cerieriieieenieeries cerieesieeseesieeneesseeenes 11-1
Use of Variant FOrMaLS..........ccooeeiriiiniiens ceeeieeseesee e see e eeas 11-1
Premastering Recommendation............cccccevveeviriinns voeviiesiieeseeniene 11-2
DVD RecOMMENAELIONSccueerieeriirriieeiieies cerieesieesieesieesieeseeseeen saeas 11-2
Use of Variant FOrMAaLS..........ccooeeiiriiiiiiies e see s aens 11-2
Premastering Recommendation............ccccevevieninns veeevieniieeneeneene 11-2
Packaging Software Fileson aCD or DVD.......cccccovoviiviiinneens e, 11-2
Software Packaging Under Previous Versions of the Standard............ 11-2
Object Description Language Specification and Usage................... 12-1
About the ODL SPeCifiCation...........cceverreiriieriiees creerieenee e see e 12-1
IMPIemMENtiNg ODLcooiiiieieiieeiees e eeeeeenns 12-2
NN o) 7= 1 o o SR URROR 12-3
CharaCter SELooeeieeie s e ereesree e e eaeas 12-4
Lexical ElemMentS. ..o e craee e 12-6
NUMDEYS ...ttt ceete et sbee e s et etes eeeeeseesseesaessneeenes 12-6
DateS and TIMES......coeveeiierieeiie et eeeie e eeeneeeseeees 12-8
I] g0 PR 12-11
o1 gL 1= SRR 12-12
Special CharaClerS......oovoiiiiiiieeeeis e ceeeeaes 12-12
SEALEMENTS ...t e £eaaeeesareesseeaneas 12-13
Lines and RECOITS.........covuiriieiieiieiies et saeenaeeas 12-13
Attribute Assignment Statement...........cocvveeeieenieene ceerieenee e 12-14
PoINtEr SLAEMENT ... e crreeneeens 12-15
OBJECT SEAEMENTeovieieieiie et ceieeiee e sies e ceeenes 12-15
GROUP SEALEMENL ... eie eeesiee e see e e caneeeas 12-16
VBIUBS. ...ttt cetee sttt ste cestesseeeesseeneesreeneenseas 12-17
NUMEIIC VAIUEBS.......oiiiiiieiiii et et seenaeesneens 12-17
UNItS EXPIrESSIONS....coiuiiiiiiiiiieieeiiesies cerieesiessseeseeseesssesssees saseesseens 12-17
TEXt SING VAIUES ..ot ettt eeeneeens 12-18
SymbolicLiteral ValUES..........ccoeuiiiiiiiiiies e .12-20
SEOOUEBINCES ...ttt eteeetee et e ceteeeaieeesbeeabeeaaseeesnes eeessseesseesnseeans 12-21
S (S SS 12-21
ODL SUMIM@IY ..citieiiieeiieeeieeeiee e ceieeasseeeseeessseessseeesnes eeesseessseeans 12-21

Differences Between ODL VErSIONS.coooeeeeeeeeeeeeeeeeees eeeeeeaeeaeaeeens 12-23

12.7.1
12.7.2
12.7.3

Chapter 13.

131
13.2

Chapter 14.

14.1
1411
14.1.2
14.1.3
14.2

Chapter 15.

151
15.2
153
154

Chapter 16.

16.1
16.2
16.3
16.4

Chapter 17.

17.1
17.11
17.1.2
17.1.3
17.2

Chapter 18.

18.1

Chapter 19.

191
19.2
19.3
1931
19.3.2
19.3.3
1934
19.35

Table of Contents

Differences from ODL VEersion L........cccccoeveeneeniennies coveenenseennens 12-23
Differences from ODL Version O........cccccoeeveeneenennes coveenienseennens 12-24
ODL/PVL USAQE.....ccouiiieeiiiiieiesieeies seeniesseesiessesssessesssssses sasesseenses 12-24
PDS ODJECES ...ttt 13-1
Generic and Specific Data Object Definitions..........ccccoeveeieenennns e 13-1
Primitive ODJECES.....cceiiieeees e e 13-2
POINTEr USAJEeiiiiieieiee ettt 14-1
TYPES Of POINTEI'S ...ttt e eesreesaee e 14-1
Data Location Pointers (Data Object POINters)ccoccveveeveeneeennen. .14-1
INCIUAE POINLENS ..ottt et eraeeenee e 14-1
Related Information Pointers (Description POINtErs)..........ccccceeueeene. 14-2
Rules for ResoIVING POINESS.........coiiriiiiiiiieeies ceieeieeee e 14-3
RECONd FOrMALS.......coiiiiiiiiiie et 15-1
FIXED_LENGTH RECOIAScceeiiirieiinieniiiies cieeiesieseesiesseeseesseeeas .15-1
STREAM RECOIUScotieiiiiiiii et ceieesiee e see et sree s eaveesseesaeas 15-2
VARIABLE _LENGTH RECOIUS.....ccceiieiiiieiesiieiens ceeiesieesiesieeeeneens 15-2
UNDEFINED RECOIUS.coiuiieieieiieiisiieis ceriesiesreesiessessesseesseenes seneenns 15-3
SFDU USAJE ...ceiiieiiiiie ettt e e ennne e e e enees 16-1
The ZI SFDU OrganiZation...........cceeceeieerieenes corieesensieseeeseeeseeeseeas .16-2
The ZK1 SFDU OrganiZationccooceereerireiiens ceeeieesieesieesieesesseens 16-5
EXAMPIES....coe e e e 16-7
Exceptionsto this Standardcccceveeiieiins v .16-8
Usage of N/A, UNK and NULLccoooiiiiieieeee e 17-1
Interpretation of N/A, UNK, and NULLccccoiiiiiiininies e 17-1
NJA et es ettt te st en Sheeeenre et e nre et etearenaen s 17-1
UNK et et eie e st esbeens seeseestesseensesseesessenneens 17-1
INULL oottt cteeiesiee et eae e eeeste ebesseessesseesessennsessens 17-1
Implementation Recommendations for N/A, UNK, and NULL 17-3
UNitS Of M EASUreMENTcc.eiiiiiiie e 18-1
Sl UNIES. ..ttt ettt ns reesaeesseesseesseenaeenreans 18-1
Volume Organization and Naming.........ccccoeveeeenieennieeeniee e 19-1
VOlUME SEL TYPES... ettt eeeiie et enes eeeneeeeeenees 19-1
Volume Organization GUIdEIINES..........ccoeiiiiiiiiiniies e 19-7
Description of Directory Contents and Organization...............ccceeunee.. 19-7
ROOT DIirectory FIlES........coouiiiiiieiieries et eens 19-7
CATALOG Subdirectory (Required)........cocceeveerernerninns veeeeieeiene 19-8
Data Subdirectory (ReqUITed)..........oooeriiriernienies cevieenen e 19-9
INDEX Subdirectory (Required)ccooeeveeneeninnies covienieeieeieen 19-9

CALIBration Subdirectory (Optional)ccoeeeereeeineieenes cevrieeen, 19-11

Table of Contents \Y

19.3.6
19.3.7
19.3.8
19.3.9
19.3.10
19.3.11
194
194.1
195
1951
19.6
19.7

Chapter 20.
20.1
20.2
20.3
20.4
20.5
20.6

Appendix A.
A.l
A.2
A.3
A4
A5
A.6
A7
A.8
A.9
A.10
A.1l1
A.12
A.13
A.14
A.15
A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24

DOCUMENT Subdirectory (Optional).........ccccveeerieeieeniees cveeriens 19-11

EXTRAS Subdirectory (Optional).........ccooeeveereeninnies ceiveieeieene 19-12

GAZETTER Subdirectory (Optional)........c.cceveeneeiinniinns veeeieenie 19-12

GEOMETRY Subdirectory (Optional)cccecveereenennennes ceveennn. 19-13

LABEL Subdirectory (Optional)ccoverreeriierieniis ceeieenieenieennn, 19-13

SOFTWARE Subdirectory (Optional).........ccoeeveveriennennes cevnieenenn 19-14
VOlIUME NAMING.....oiiiiiieiieee e e caeeeeeeeeenes 19-16

VOIUME ID ..ot et seebeesaeesseeaneeas 19-16
Volume Set NamMIiNg........ccoooeiiiiiieiieries e es sreenaeens 19-17

VOIUME SELID ..o e eeeneeeeeeees 19-17
Logical Volume NamMiNgG.......cccoeuiriieiiiiiienies cerieesiee e seessieeseeeseees oa 19-18
Exceptionsto This Standard...........ccceveeiieninies v 19-18
ZIP COMPIESSION ..ttt e sieee e sttee e sstee e seeessreee e ssseeesnseeesnseeesnnenens 20-1
ZIP SOMIWEIC......eeiieeieieiiee et teeiee e st ee seebeesseesaeesneeanes 20-1
ZIP FlE LabEIS. ... e e 20-2
Packaging Zip Archives on VOIUMES...........ccoveevieniniies coeeeieeieenees 20-3
Label EXAMPIE.....eiiiiiiiece et e eeetee e 20-3
ZIPINFO.TXT EXAMPIE ..ot et nee seens 20-4
AddItioNal FIES......ccueiiieieeeiees e e 20-5
PDS Data Object DefinitioNns.........cccooieeeiieeeiiiie e A-1
ALTAS e e et naeas .A-3
ARRAY (Primitive Data ObJeCt).........cccveeierririiieies e A-4
BIT COLUMN L. ettt seesteeseeesseesseas A-8
BIT ELEMENT (Primitive Data ObjeCt)........cccoverririiiriiieis ceeieeen, A-11
CATALOG ...ttt e siee e sae e sreesne eessessseeeneesseenees A-12
COLLECTION (Primitive Data Obj€ct)........cccveverneeiieninns e A-15
COLUMN ...ttt criee et es saeesasesteenseesseesaeas A-16
CONTAINER ... ettt reesseesseeenee s A-21
DATA PRODUCERcociiiieeeiie e cenieeeie et saee e 2eneeenees A-28
DATA SUPPLIER ...ttt et seesveesseens A-30
DIRECTORY ...otitiiiieitie e ete et sveesieesieesseeseesseesseess sbeesseessessnsesnes A-32
DOCUMENT ...ttt crteesiee e see et sreessee s sreesseesneesseenees A-34
ELEMENT (Primitive Data Object)ccccvvuiiieiiieiieis e A-38
I e e e A-39
GAZETTEER _TABLE ... e eens A-43
HEADER ... ettt saeeeeeeteesaee s saee s A-53
HISTOGRAM ..ottt ettt s aae seesseesneeeeeenes A-55
HISTORY ..ttt ettt nae seesseesneesneesnseeseens A-58
IMAGE......oo et ettt sbeesreesaeesaeesneesneeenes A-62
INDEX_TABLE ...t et saeeeneeeneee e A-67
e I I SRS A-72
QUBE ... et ebe e ene e A-75
SERIES ...t et ettt A-83

Vi

A.25
A.26
A.27
A.28

Appendix B.
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33
B.34
B.35
B.36
B.37
B.38

Table of Contents

SPICE KERNELooiiiiii et ettt eeeennneeesnnnns A-91
TABLE .. oo e e ————————— A-94
I =0, PP PPPT A-115
VOLUME ...t e cesrre e e anre e naeeas A-117
Complete PDS Catalog ODJeCt Seteevviieeiiiiieiiie e B-1
YN 1N = ISR B-4
DATA_SET_COLL_ASSOC DATA_SETS....cccioivereeeeeseseines vt B-10
DATA_SET COLL_REF INFO....c.ooiiiieeeiieeeseieeeies evevesessnsesssnenes B-11
DATA _SET _COLLECTIONotiiiiiiiee i reeeenieeeesiaee e ennneee s B-12
DATA_SET_COLLECTION_INFO......ooieeeieereeeieeerees evreinessesenes B-15
DATA_SET HOST ...ooveieeeeeeieeeeeeieees eevestsessssssssssssasesssnens oeseseseans B-17
DATA_SET _INFORMATIONoooviiiiiie et ceeeiveeesiieeeesinneen B-18
DATA_SET_MAP_PROJECTION......c.ooiirrieeiireieeinens cevereseniensenenes B-22
DATA_SET_MAP_PROJECTION_INFO......c..cccomivrerrrrrsernens cereeens B-25
DATA_SET_REFERENCE _INFORMATIONccooovviiiiieeiiieeeenn o B-27
DATA_SET TARGET ...ooiviceteeeeeeeetsiens seeeeistssessessssesssesnsssens seeees B-28
DS MAP_PROJECTION_REF INFOccoooeviiieeeietiresis eveeienesenn, B-29
IMAGE_MAP_PROJECTIONoooiiiiieiiiieeciieeee cevriieee e siree e B-30
INSTRUMENT ... et reeeesssaeesennns B-35
INSTRUMENT _HOST ... et v B-39
INSTRUMENT_HOST _INFORMATIONcooiiiieiciieeciieeee e B-41
INSTRUMENT_HOST_REFERENCE _INFO.....cccoeiiviiiiecieeeine e B-42
INSTRUMENT _INFORMATION ...ttt vveeeeiieee e B-43
INSTRUMENT_REFERENCE _INFO. ..o e B-46
INVENTORY ...ttt e et e e stee s e ennns snneeesssseessannees B-50
INVENTORY _DATA_SET INFO...cooiiiieieeeieeeieeiesies cevereseseinesnenes B-52
INVENTORY _NODE_MEDIA_INFOcoiiiieiecieeciiees veeiieeeens B-53
IS 1 N PR B-54
MISSION _HOST ... e reeeenaeeeaas B-59
MISSION_INFORMATION ..ot ciiiie s eeeeeireeeesieeeesinee s B-60
MISSION_REFERENCE _INFORMATIONccoooiiiiiiiineciieeeen e B-62
MISSION_TARGET ...ooiiiiiie it ceviiee e sree s eeennees B-63
PERSONNEL ...ttt ettt e e cesssneeesnnneeeenns B-64
PERSONNEL _ELECTRONIC MAIL ..o vveeenieenn, B-66
PERSONNEL _INFORMATIONoooiiiiiieciiiee e ceviieeeesreee s B-67
REFERENCE ...t it siee e sniteeeenn sesssaesesnnneeeenns B-68
SOFTWAREt ettt eeeesaeeeearaeeeans B-70
SOFTWARE_INFORMATIONccciiieiiiir et esis cveeeessineeeesnnee e B-72
SOFTWARE_ONLINEooviiiee s e e B-73
SOFTWARE _PURPOSE. ...t e o B-74
I] = SRS B-75
TARGET_INFORMATIONooiiiiiie et ceeciiee e ciree e B-77

TARGET_REFERENCE_INFORMATIONccoooiiiiiiiieiieiees e B-78

Table of Contents vii

Appendix C.
C1l
C.2
C3
CA4
C5
C.6
C.7
C8
C.9
C.10
Cl1
C.12

Appendix D.
D.1
D.11
D.1.2
D.2
D.21
D.3
D.31
D.3.2

Appendix E.
E.l
E.2
E.3
E.4

Appendix F.
Appendix G.

Appendix H.
H.1
H.2
H.3
H.3.1
H.3.2
H.3.3
H.3.4

Internal Representation of Data TYPES.......coceeevveiiiiieeniie e C-1
MSB_INTEGER.......cccoiieiiiieieiiieis cetierieseesie s esee e nne ceseesseeneessens C-1
MSB_UNSIGNED _INTEGERccooiiieiieiieienieeie evreeiesieenie e seeneens C-2
LSB _INTEGER.......ccciiiiiiitecierieeis erteeiesieeee e seeseesseens seeneessesseessenns C-3
LSB_UNSIGNED _INTEGERccoeiiiiiieiiisieriens ceeniesieesieseesee e C-5
[EEE. _REAL ..ottt ettt eessesseensesneensennens C-6
[EEE_COMPLEXooiiiiiiesieeierie et eeieesiesee e ssesseense s eessesseessenns C-8
PC REAL ...ttt ettt ene sesseessesseeeessesneensens C-9
PC_COMPLEX ..ottt sie eeteeieste e saesneens seeneessesseenns C-11
VAX_REAL, VAXG _REAL ..ottt eesieeiesie e sneeeens C-12
VAX_COMPLEX, VAXG_COMPLEXccccceviiieieiieienies cvveeieenen C-15
MSB_BIT_STRINGooiiiiiiecieeieriteies e sie et saeeseenns C-15
LSB BIT_STRING ..ottt crteeiesie e sie e seneeneenns C-16
Examples of Required FIleS..........ccoooiiiiiiiiiiiiee e D-1
AAREADME.TXT .ottt ceteesiesee e sreesaesseeeesne sessesseensens D-1
ANNOtated OULIINE.coiiiiiieieeeiet e eesaeeeee s D-1
EXAMPIE... s e s D-2
INDXINFO.TXT oootiieeiisiieiesieeiesiees seesseesiesseeseessesseessessees sseessessesssenns D-6
EXAMPIE... s e s D-6
SOFTINFO.TXT oieitieiesieeiesieseenieene esteeeesseseessesseessesseens seessessessessses D-7
(O 11 1] T RIS .D-7
EXAMPIE... s e s D-8
NAIF TOOLKIT DIRECTORY STRUCTURE.......c.cccocvviieiiieinnn E-1
NATF DIFTECLONY ..uvieitieieieeieeieeieeie eeeteesieesieesesseeseeeees cebeeseesseessensns E-1
TOOLKIT DIFECLONY ...ceveeeiieeieeitiesieesieess sueesieeseeseessessseesseesss eessessseens E-1
USING the NATF TOOIKIT ...c..eeiieiiiiieiieeieeis et ceniens E-5
NAIF's File Naming CONVENLIONS..........ccueuerrieeieeniees creerieeseeseesieene E-5
ACTONYIMS .t e e e e e e e e e e nnr e e e e e e e e eaanns F-1
SAVED Dala ...ceiieiiiiiieeiieee et G-1
Reference Citation Specification and Namingccoccceeevveeeiiennne. H-1
Materials Appropriate for Inclusion in a Reference List....................... H-1
Materials Inappropriate for a Reference List........ccocvveeicviiieis v H-1
Reference List Citations..........cooveieeiiiiiiiies erieeieesiee e see e ceieens H-2

CitatioNS - ATTICIES.. ..o e e saee s H-2

Citations — BOOKS OF REPOIS.......ccceeieriieiiriienis eeeie e H-2

Citations — Papers Presented at MeetingSccoveveeeeeieeneenns cevrienne H-3

Citations— Electronic PUDliCationS..........cccoveriieninniies e H-4

Change Log

Version

31

viii

PDS Standards Reference Change L og

Section
1.1

23

24

3.0

3.2
523

6.3

6.4

10.0, ALL

10.2.1
12542
13.2

14

17

19
Appendix A

Appendix A

Change

PDS Data Policy added

Reference coordinate standard expanded to support body-
fixed rotating, body-fixed nonrotating, and inertial
coordinate systems.

Ring coordinate standard added.

List of internal representations of data types moved to
Appendix C

EBCDIC_CHARACTER added to PDS Standard data types
Minimal label option described

Data set collection naming-- data processing level component
made optional

Data set naming -- added support for SPICE and Engineering,
where no instrument component applies

PDS use of UNIX/POSIX forward slash separator for path
names. VM S-style bracket notation replaced.

Required file remes for catalog objects included
PDS use of double quotes clarified

Use of Primitive objects described

New chapter -- Pointer Usage

New chapter -- PDS Usage of N/A, UNK, and NULL
Logical Volume organization added

Primitive Objects added

Header object -- required and optional keyword lists changed
Container abject -- Column no longer a requried sub-object

Version

32

Appendix B

Appendix C

Appendix D

Appendix E

Index

ALL

Section

512

5.2.3, Appendix A

8and 19

8.2

9.1

Change Log

Streamlined Catalog Object Templates with examples replace
3.0 st

New appendix containing internal representations of data
types (moved from Chapter 3)

Outline and example for AAREADME.TXT added

Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section
del eted.

The document now features an index.

No other substantive changes have been made to the
standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have
been supplied.

Change
Release Date: 7/24/95

Label format discussion added
Noted that values in labels should be upper case (except
descriptions). Fixed examples n Appendix A.

Noted that for data products using minimal labels,
DATA_OBJECT_TYPE = FILE in the Data Set Catalog
Template

Added target IDs for DUST and SKY
Added instrument component values SEDR and POS
Noted that Data Set and Data Set Collection IDs and Names

should be upper case. Fixed examples.

Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

SOFTWARE Subdirectory naming recommendation added

Volumes may contain rultiple versions of VOLINFO

Change Log

921

101

10.2

10.2.3and 5.1

1111

11.1.2

11.1.3

14.1.2

15

151

153

155

17.2

18

Increased maximum linelength in text file to 78 characters
plus CR/LF

Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

Added recommendation that file extension identify the data
type of afile.

Added .QUB as reserved file extension for spectral image
gubes.

Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT

Added LABINFO.TXT to list of required xxxINFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

added note that detached label file (*.LBL) should have the
same base name as the associated data file

Added PDS Extended Attribute Record (XAR) policy

Added recommendation that CDs be premastered using single
session, singletrack format.

Added section on Packaging Software files on a CD-ROM
Added new example of structure pointer

Added recommendation that for VAX/VMS-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VM Srestriction to an even

number of bytesin section 15.2

Removed discussion of use of BLOCK_BYTES and
BLOCKING_TY PE (since this data element not in PSDD)

Added notation that CR/LF is required line terminator for
PDS label and catalog files

Reworded first sentence.

Allow definition of numeric constants representing N/A,
UNK, and NULL to be defined for usein an INDEX table.

replaced reference to PDS V1.0 with a general statement

Xi

19

19

19.2

19.3

19.3

19.4, Appendix A
195.1

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Appendix B

Appendix B

Appendix D

Appendix D.1

Change Log

Added SOFTWARE subdirectory recommendations
Recommend that an archive volume be based on asingle
version of the PDS standards. Volume organization guidelines

added.

Clarified requirements for files & directories when logical
volumes used

INDEX table standard update

use of axx- and bxx- prefixesin required file names
clarified

fixed examples-Volume and V olume set names capitalized
Volume set ID formation rule modified.

updated COLUMN, BIT_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Added ALIAS and INDEX_TABLE objects

Added examples of COLUMN objects having ITEMs
Clarified use of ROW_SUFF X_BYTES and
ROW_PREFIX_BYTES for SPARE fieldsin Tables with

fixed length records

Clarified the requirements for VOLUME dbjects for Logical
volumes

Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion..

Inventory, Software_Inventory and Target templates added

Removed incorrect example of use of Personnel template

INDXINFO.TXT and SOFTINFO.TXT outlines and
examples added

Modified example of AAREADME.TXT to include rules on
how pointer statements are resolved.

Change Log Xii

Appendix E and F Added Appendix E - NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

ALL corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Change Log Version 3.1 change log updated--some items were missing
Version Section Change
3.3 Release Date: 6/1/99

1.0 Added DVD as new medium

13 Changed Versionto 3.3

1.6 Updated/corrected references

1.7 Added reference to PDS web page

20 Added definition for IAU

Clarified text

23 Corrected punctuation

2.7 Fixed punctuation for references

34 Corrected punctuation

3.7 Corrected spelling and punctuation

4.0 Added Section headers for Primary & Secondary Objects

41 Corrected paragraph formatting

51.2 Added paragraph about ASCII character set

Added paragraph about Label Padding
Fixed math in calculating start byte of 8th record
Aligned keyword/values

522 Corrected grammar
523 Removed "' "in the Data Set catal og template.
531 Changed Versionto 3.3
53.2 Modified last paragraph
533 Listed examples of primary and secondary objects
53.3.2 Changed ' bottom’ to’following’
534 Removed AMMOS as an example
534.1 Removed SPACECRAFT_NAME as valid keyword
5.34.3 Removed SPACECRAFT_NAME as valid keyword.
535 Changed PDS has devel oped and continues to develop...
Added example for a pointer (*"DESCRIPTION)
5.3.6 Aligned keyword/values
Clarified statement
537 Changed: needed for conformance
6.0 Prioritized organizations that PDS works with
6.1 Provided definition for Data Set Collection and removed

MGN example.

Xili Change Log

Corrected spelling (considerations) and punctuation

6.2 Added acronyms for data set name and identifier
6.3 Changed paragraph from future tense to past tense
6.4 Section 5 - comets

Section 6 - added acronymsto list
Section 6 - corrected spelling (ephemeris)
Section 7 - corrected spelling (gravity)
Section 8 - clarified version number rules

7.0 Updated paragraph
7.1 Clarified statements about date/time formats
7.21 Added PDS preference for convention
731 Corrected grammar
Reformatted paragraph
7.3.2 Corrected grammar
Updated paragraphs
8.1 Corrected grammar (standards directory)
Added EXTRAS directory
Added Browse and Data directory descriptions
8.2 Section 4 - Better examples of directory names

Section 5 - Reformatted paragraph
Section 8 - Corrected spelling and grammar

8.3 Changed to valid keywords

84 Corrected grammar (data are)

9.0-9.33 Complete rewrite of Documentation Standard
Added HTML standards

10.0-10.1 Added SO 9660 Level 2 description
Added ";1" to Level 1 description

10.2.1 Clarified required file names paragraphs
Added TARGET_CATALOG pointer to list

10.2.2 VOLDESC.SFD file becomes deprecated

10.2.3 Described detached | abel
Corrected grammar (its)

10.2.4 Added extensions and changed SPICE extensions
Corrected spelling (postscript) and grammar (data that have)

1111 Changed chapter name

121 Aligned equal signs

12111 Added reference

12.2 Reformatted paragraph

12.3 Spelling

12.31 Corrected punctuation (1.234E2)

12.31.2 Corrected value (16#+4B#)
Reformatted paragraph

12.31.3 Corrected value (1.234E3)

12.3.2 Updated paragraphs

12321 Clarified date format

12.3.2.3 Clarified paragraph

Change Log

12324
12.3.25
123251
12331
12.34
12.35
124
1241

12.4.2
125.2

12531

1254

12541
1255

12.5.6

12.6
12.7
12.7.1
12.7.2
131
1411
14.1.2

14.2
15.0
15.2
153
16.0
16.2

171
17.1.2
17.2
18.0
191

19.3

Xiv

Changed year to 4 digits

Updated paragraph

Corrected value (1990-158T15:24:127)
Corrected value ("::="

Added examples

Corrected punctuation and grammar (units)
Corrected punctuation

Corrected grammar (the the)

Aligned equal signs

Aligned equal signs

Reformatted asterisks to not be superscript
Corrected value (60.15)

Corrected grammar (affect)

Reformatted paragraphs

Corrected value (10)

Added valid quoted strings

Clarified paragraph

Reformatted asterisk to not be superscript
Corrected spelling (eccentricity)
Changed to valid keyword

Corrected value (removed 1st bracket "[")
Changed to valid keyword

Reformatted paragraphs

Reformatted paragraphs

Corrected grammar (sections detail)
Corrected grammar ("isthat are")

Added required keywords to definition
Corrected grammar (occurs)

Corrected punctuation

Corrected value ("STRUCTURE)
Changed paragraph numbering
Reformatted pointer rules

Reformatted paragraph and table
Changed paragraph numbering

Changed paragraph numbering
Corrected grammar

Clarified paragraph

Changed case of #mark#

Changed case of title (and)

Corrected punctuation (information)
Corrected case of title (and)

Corrected Sl Units (electricity potential, etc)
Updated paragraph

Corrected grammar (volume types)
Corrected grammar (up to the)

Corrected grammar (an SFDU)

XV

194.1

19.5

195.1

19.7
20.0-20.6
Appendix A

Al

A.2

A.3

A5

A7
A.8
A.10
All

A.12

A.13
A.14

A.15

A.16

A.18
A.19

Change Log

Corrected spelling (global)

Updated Catalog and Index definitions

Added description of the EXTRAS directory

Added Preferred Method for supplying PDS catalog objects
Corrected grammar (data have been)

Changed case of value (ID)

Corrected spelling (radiometry)

Corrected value (VOLUME_SET_NAME)

Corrected value (VOLUME_SET _ID)

Reformatted paragraph

Corrected case of value (IDs)

Complete rewrite of Zip Compression

Added URL to Cold Fusion pages

Updated definition for ALIAS

Corrected spelling (subobject)

Added and changed Optional keywords

Reformatted paragraphs

Corrected spelling (the time)

Changed Optional keywords

Corrected spelling (created)

Added TARGET to Optional Objects

Clarified use of CATALOG.CAT

Formatted paragraph

Formatted paragraph

Changed Optional keywords

Updated paragraph

Changed case of keyword values to uppercase
Corrected grammar (on @)

Corrected grammar (on the medium)

Removed incorrect statements

Updated example

Changed Optional keywords

Removed a Required keyword

Added Optional keywords

Changed value to keyword (GAZETTEER_TABLE)
Corrected grammar (the breath & upper right)

Added Optional Keywords section

Added Optional Objects section

Added trailing double quote to DESCRIPTION section
Corrected paragraph to reflect proper file name
Changed value to be enclosed in double quotes

Added Required and Optional Keywords and Objects sections
Added BAND_NAME keyword

Added Optional keyword

Changed values to be keyword (CHECK SUM)
Changed values to be keyword (SCALING_FACTOR)

Change Log

A.20

A21

A.23

A.24
A.26

A.27

A.28

A.29

Appendix B

B.1
B.2

B.3

B.4

B.5

B.6

B.7

B.8
B.10

B.11

Appendix C

XVi

Changed paragraphs

Changed case of keyword values to uppercase
Reformatted paragraphs

Removed Optional Keyword

Added Optional Objects

Corrected example (See additional examplein A.27.1)
Added example for CORE_ITEM_TYPE

Corrected FILE_ RECORDS to be accurate
Corrected invalid keyword (SUB_SOLAR_AZIMUTH)
Corrected grammar (data that vary)

Corrected grammar (data are)

Corrected punctuation (The Tookit)

Corrected grammar (meta-data which are)

Updated section numbersto reflect location (spares)
Repaired examples (byte lengths)

Linelength to 72 chars

Added Required and Optional Objects

Repaired example

Updated Optional keyword

Changed case of keyword values to uppercase
Changed paragraph

Changed text description length to be 80 characters from 72
Added text formatting standards

Corrected punctuation

Repaired example

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (DESCRIPTION)

Reformatted paragraph

Reformatted and repaired example

Corrected spelling (description & instrument)
Reformatted paragraph

Reformatted and repaired example

Corrected grammar (properties of the)

Reformatted paragraph

Reformatted and repaired example

Repaired example

Reformatted paragraph

Reformatted and repaired example

Repaired example

Corrected spelling (package)

Replaced example of SOFTWARE_INVENTORY template
Corrected grammar (target catalog)

Corrected grammar (SURFACE_GRAVITY)
Repaired example

Minor corrections throughout text

XVii
C5
C.10
Appendix E
Appendix F
Appendix G
Version Section
34

Change Log

Corrected spelling (exponent-as-stored)
Corrected spelling (imaginary)
Corrected sentence (source code for)
Corrected spelling (spacit)

Corrected grammar (These data are)
Corrected punctuation

Corrected CD-WO nomenclature
Added DE (Data Engineer)

Corrected spelling (Principal)

Added SAVED Data as new section

Change

Release Date: 06/15/2001

Technical editing of the entire document (Chapters 1-20, Appendices A-G) was performed by Anne Raugh under
contract to JPL. This editing focused on correcting awkward language, making examples consistent with the text,
clarifying apparent internal inconsistencies, and in general ensuring a more readable document. Substantivehanges
to the standards themsel ves were specifically prohibited. Document changes made by Raugh were reviewed by Lyle
Huber (ATMOS) and Ron Joyner (CN). Cases in which the intention of the original document could not be
determined by the above team were referred to Steve Hughes (CN), who acted as both historian and final arbiter.

On May 04, 2001, Ann Raugh, Richard Simpson, Lyle Huber, Steve Hughes, and Ron Joyner met at New Mexico
State University to discuss and arbitrate the final set of changes to be ncorporated into this document.

Chapter 1. Introduction 1-1

Chapter 1. Introduction

In order for planetary science data to be useful to those not directly involved in its creation, sup-
porting information must be made available with the data toallow effective use and
interpretation. The exchange of dataisincreasingly important in planetary sciencethusthereisa
need for establishment and enforcement of standards regarding the quality and compl eteness of
data. Electronic communication has become more sophisticated, and the use of new media (such
as CD-ROMs and DVD) for data storage and transfer requires additional formatting standards to
ensure long-term readability and usability. To these ends, the Planetary Data System (PDS) has
developed a data set nomenclature consistent across discipline boundaries, as well as standards
for labeling data files.

1.1 PDS Data Policy

Only data that comply with PDS standards will be published in volumes laeled “ Conforms to
PDS Standards’. When the PDS assists in the preparation of data published in a norcompliant
format, PDS participation should be acknowledged with the statement such as “funded by PDS’.
The PDS Management Council makes decisions on compliance waivers Non-compliant data
setswill be incorporated into the PDS archives only unde unusual circumstances.

1.2 Purpose

This document is intended as a reference manual for use in conjunction with thePDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives instructions
for preparing data sets. In addition, aglossary of terms used throughout the documentation is
included as an appendix to the Warkbook. The Planetary Science Data Dictionary (PSDD)
contains definitions of the standard data element names and objects. This Standards Reference
defines all PDS standards for data preparation.

1.3 Scope

The information included here constitutes Version 3.4of the Planetary Data System data
preparation standards for producing archive quality data sets.

1-2 Chapter 1. Introduction

1.4 Audience

This document is intended primarily to serve the community of scientists and engineers
responsible for preparing planetary science data sets f@ submission to the PDS. These include
restored data from the era prior to PDS, mission data from active and future planetary missions,
and data from earth-based sites. The audience includes personnel at PDS discipline and data
nodes, mission principal inestigators, and ground data system engineers.

1.5 Document Organization

Thefirst chapter of this document, “ Chapter 1 — Introduction”, provides introductory material
and citations of other reference documents. The remaining chapters provide an encyclopediaof
data preparation standards, organized al phabetically by standard title.

1.6 Other Reference Documents

The following references are cited in this document:

??Batson, R. M., (1987) “Digital Cartography of the Planets: its Status and Future”, Photo-
grammetric Engineering & Remote Sensing 53, 1211-1218.

??Davies, M.E., et al. (1991) “Report of the IAU/IAG/COSPAR Working Group on Carto-
graphic Coordinates and Rotational Elements of the Planets and Satellites: 1991”7,
Celestial Mechanics, 53,377-397.

??Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

??Guide on Data Entity Naming Conventions, NBS Special Publication 506 149.

??Planetary Science Data Dictionary, JPL D-7116 Rev D, July 15, 1996, (Available from
the PDS).

??Planetary Data System Data Preparation Workbook Version 3.1, JPL D-7669 Part 1, Feb-
ruary 17, 1995, (Available from the PDS)

??Issues and Recommendations Associated with Distributed Computation and Data
Management Systems for the Space Sciences, National Academy Press, Washington, DC,
111p.

International Standards Organization (1SO) References

?2?1S0 9660:1988 “Information Processing - Volume and File Structure of CD-ROM for
Information Exchange”, April 15, 1988.

Chapter 1. Introduction 1-3

??1S0 646:1991 ASCII character set.
??1S0 8601:1988 “ Data Element and Interchange Formats — Representations of Dates and
Times’
SFDU and PVL References

??Sandard Formatted Data Units - Sructure and Construction Rules, CCSDS 620.0-R-
1.1c, May 1992.

?? Sandard Formatted Data Units - A Tutorial; CCSDS 620.0-G-1, May 1992.
??Parameter Value Language Specification (ccsd0006); CCSD 641.0-R-0.2, June 1991.
??Parameter Value Language -- A Tutorial; CCSDS 641.0-G-1.0, May 1992.

1.7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data System Data Preparation Workbook,
and this document, the Planetary Data System Standards Reference, are availableonline.
Information on accessing these references may be found on the PDS website at the following
URL:

http://pds.jpl.nasa.qov

To obtain a copy of these documents or for questions concerning these documents, contact the
PDS Operator (at PDS_ OPERATOR@)pl .nasa.gov, 626-744-5579) or a PDS data engineer.

The examples provided throughout the chapters and appendices are based on both existing and
planned PDS archive products, modified to reflect the current version of the PDS Standards.
Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions from products designed under older versions of the Standards may
differ significantly. To check the currentstate of any object definition, consult a PDS data
engineer or thisURL.:

http://pdsproto.j pl.nasa.gov/ddcolstdval/newdd/top.cfm

Additional examples may be obtained by contactinga Data Engineer.

1-4

Compliance waivers, 1-1

, 1-1
Data Preparation Workbook, 1-1
data set
Non-compliant, 1-1
Management Council, 1-1
object definitions, 1-3
Planetary Science Data Dictionary, 1-1
, 1-2

, 1-1
Waivers (compliance), 1-1

Chapter 1. Introduction

Chapter 2. Cartographic Standards 2-1

Chapter 2. Cartographic Standards

The following cartographic data standards were devel oped through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG also serve on the key International Astronomical Union (IAU) committee that formulates
these standards for international adoption. It is the intention of the PDS to keep its own
cartographic standards in line with those of the PCWG, and in turn the IAU.

The cartographic standards used in any particular data set should be identified and, where
helpful, documented on the archive volume.

2.1 Inertial Reference Frame, T ime Tags and Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the J2000 system)
isthe standard inertial reference frame. The Earth Mean Equator and Equinox of Besselian 1950
(JD 2433282.5) is also supported because of the wealth of previous mission data referenced to
this system. (The transformation between the two systemsis well defined.)

The standard format for timetags is UTC in year, month, day, hour, minute and decimal seconds,
although Julian dates are also supported.

The standard units are SI metric units, including decimal degrees.

2.2 Spin Axesand Prime Meridians

The IAU-defined spin axes and prime meridians defined relative to the J2000 inertial reference
system are the standard for planets, satellites and asteroids where these parameters are defined.
For other planetary bodies, definitions of spin axis and prime meridian determine d in the future
should have the body-fixed axis aligned with the principal moment of inertia, with the North

Pole defined as lying along the spin axis and above the Invariable Plane. Where insufficient
observations exist for a particular body to determine the principal moment of inertia, coordinates
of asurface feature will be specified and these used to define the prime meridian. Note that some
small, irregular bodies may have chaotic rotations and will thus need to be handled on a case -by-
case basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems. body-fixed rotating; body-fixed non-rotating;
and inertial. A body-fixed coordinate system is one associated with the body (e.g., a planet or
satellite). The body-fixed system is centered on the body and rotates with the body (unlessitisa
non-rotating type), whereas an inertial coordinate systemis fixed at some point in space.

To support the descriptions of these various reference coordinate systems, the PDS has defined
the following set of data elements (See the Planetary Science Data Dictionary for complete
definitions.):

2-2 Chapter 2. Cartographic Standards

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME
LATITUDE

LONGITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST_LONGITUDE
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, the PDS has specifically defined two types of body-fixed rotating coordinate systems:
planetocentric and planetographic. However, the set of related data elements are modeled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added as the need arises. Contact a PDS data engineer for
assistance in defining a specific coordinate system.

The definition of planetographic longitude is dependent upon the rotation direction of the body,
with longitude defined as increasing in the direction opposite to the rotation. That isto say, the
longitude increases to the west if the rotation is prograde (or eastward) and vice versa. Table 2.1
lists the rotation direction (prograde or retrograde) of the primary planetary bodies and the
Earth’s Moon. It aso indicates the valid longitude range f or each body. In order to
accommodate different traditions in measuring longitude, the Planetary Science Data Dictionary
defines abroad longitude range: (-180, 360). Table 2.1 indicates which part of that rangeis
applicable to which body.

Table2.1: Primary Bodiesand Earth’s Moon: Rotation Direction and Longitude Range

Planet Rotation Direction L ongitude Range
Earth Prograde (0, 360)
(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)
(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (0, 360)
Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun Prograde (0, 360)
(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Eart h, Moon and Sun are prograde, however it has been traditional to
measure longitudes for these bodies as increasing to the east instead of the west. The PDS
recommends that the planetographic longitude standard be followed, but also supports the

Chapter 2. Cartographic Standards 2-3

traditional method. Specifically, the longitude range of (-180, 180) is supported for the Earth,
Moon and Sun

2.3.1 Body-Fixed Rotating Coordinate Systems

2311 Planetocentric

The planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatorial plane and a vector connecting the point of interest and the
origin of the coordinate system. Latitudes are defined as positive in the northern hemisphere of
the body, where north isin the direction of Earth’s angular momentum vector, i.e., pointing
toward the hemisphere north of the solar system invariant plane. Longitudes increase toward the
east, making the planetocentric system right-handed.

2312 Planetographic

The planetographic system has an origin at the center of mass of the body. The planetographic
latitude is the angle between the equatorial plane and a vector through the point of interest,
where the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitudeis
defined as increasing with time to an observer fixed in space above the object of interest. Thus,
for prograde rotators (rotating counter clockwise as seen from a fixed observer located in the
hemisphere to the north of the solar system invariant plane), planetographic longitude increases
toward the west. For aretrograde rotator, planetographic longitude increases toward the east.

24 Rings

Locations in planetary ring systems are specified in polar coordinates by a radius distance
(measured from the center of the planet) and a longitude. Longitudes increase in the direction of
orbital motion, so the ring pole pointsin the direction of right -handed rotation. Note that this
corresponds to the |AU-defined North Pole for Jupiter, Saturn and Neptune, but the South Pole
for Uranus.

Longitudes are given relative to the ascending node of the ring plane on the Earth’s mean equator
of J2000. However, the Earth’s mean equator of B1950 is also supported as a reference longitude
because of the wealth of data already reduced using this coordinate frame. The differenceis
generally asmall, constant offset to the longitude. All longitude values fall between 0 and 360
degrees.

Note that ring coordinates are always given in an inertial frame, asit is impossible to define a
suitable rotating coordinate frame for a ring system where features rotate at different rates. When
it is necessary to specify the location of a moving body or feature, the rotation rate and epoch
must be specified in addition to the longitude.

To support the description of locations in a planetary ring system, the PDS has defined the
following elements:

2-4 Chapter 2. Cartographic Standards

RING_RADIUS
MINIMUM_RING_RADIUS
MAXIMUM_RING_RADIUS

RING_LONGITUDE
MINIMUM_RING_LONGITUDE
MAXIMUM_RING_LONGITUDE

B1950 RING_LONGITUDE
MINIMUM_B1950 RING_LONGITUDE
MAXIMUM_B1950_RING_LONGITUDE

RING_EVENT_TIME
RING EVENT_START TIME
RING_EVENT_STOP TIME

RADIAL_RESOLUTION
MINIMUM_RADIAL_RESOLUTION
MAXIMUM_RADIAL_RESOLUTION

The radius and longitude el ements define an inertial location in the rings, and the ring event time
elements define the time at the ring plane to which an observation refers. If desired, the radial

resol ution elements can be used to specify the radial dimensions of ring features that can be
resolved in the data. Seethe Planetary Science Data Dictionary (PSDD) for complete definitions
of these elements.

In general, the above elements refer to locations in an equatorial ring. However, under ce rtain
circumstances it is necessary to define these values for an inclined ring, in which case the
interpretations are slightly more complicated. Here longitudes are measured as a “ broken angle’
along the planet’s equatorial plane to the ascending node of the ring plane, and thence along the
ring plane. In these circumstances, it is also necessary to define the orbital elements of thering in
guestion viathe following elements in the PSDD:

RING_INCLINATION
RING_ASCENDING_NODE_LONGITUDE
NODAL_REGRESSION_RATE
POLE_RIGHT ASCENSION
POLE_DECLINATION
COORDINATE_SYSTEM_ID

The ascending node longitude refers to the moment defined by the RING_EVENT_TIME. The
ring inclination is given relative to the planet’s equator, as specified by the spin pol€e' s right
ascension and declination. The COORDINATE_SYSTEM _ID can be either “J2000” or
“B1950”, with “J2000" serving as the default. See the PSDD for further details.

Chapter 2. Cartographic Standards 2-5

2.5 Reference Surface

Two standard reference surface moddl s are supported: the digital terrain model (DTM) and the
digital image model (DIM). Note, however, that Mars is an exception for which planetographic
latitude is used.

The digital terrain model defines body radius as a function of cartographic latitude and longitude
in asinusoidal equal -area projection. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of cartographic coordinates are all supported.

The digital image model (DIM) defines body brightness in a specified spectral band or bands as a
function of cartographic latitude and longitude in a sinusoidal equal -area projection, and
associated with the surface radius values in the corresponding DTM. DIMs registered to
spheroids, ellipsoids and harmonic expansions are supported.

2.6 Map Resolution

The suggested spatial resolution for amap is 1/2" degrees. The suggested vertical resolution is 1
x 10™ meters, with mand n chosen to preserve all the resolution inherent in the data.

2.7 References
The following references provide more detail on the cartographic data standards:
Davies, M. E., et a (1991) “Report of the IAU/IAG/COSPAR Working Group on Cartographic

Coordinates and Rotationa El ements of the Planets and Satellites: 1991,” Celestial Mechanics,
53, 377-397.

Batson, R.M., (1987) “Digital Cartography of the Planets: New Methods, its Status and Future’,
Photogrammetric Engineering & Remote Sensing, 53, 1211-1218.

Gredley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

2-6

body coordinates
prime meridians, 2-1
spin axes, 2-1
map resolution, 2-5
reference coordinates, 2-1
body-fixed, 2-2, 2-3
data elements, 2-2
planetocentric, 2-2, 2-3
planetographic, 2-2, 2-3
ring systems, 2-3
ring systems, data elements, 2-4
reference frames
B1950, 2-1
standard inertial (J2000), 2-1
reference surface models, 2-5
digital image model (DIM), 2-5
digital terrain model (DTM), 2-5
rotation direction
of Solar System bodies 2-2
time tags
format, 2-1

Chapter 2. Cartographic Standards

Chapter 3. DATA_TYPE Vaues and Data File Storage Formats 31

Chapter 3. DATA_TYPE Vauesand DataFile
Storage Formats

Each PDS archived product is described using label objects that provide information about the
datatypes of stored values. The data elements DATA_TYPE, BIT DATA_TYPE, and
SAMPLE_TY PE appear together with related elements defining starting location and length for
each field. In PDS data object definitions the byte, bit, and record positions are counted from left
toright, or first to last encountered, and always begin with 1.

Data files may be in ASCII or binary format. ASCII format is often more easily transferred
between hardware systems or even application programs on the same computer.
Notwithstanding, numeric data are often stored in binary files when the ASCII representatio n
would require substantially more storage space. (For example, each 8-bit signed pixd valueina
binary image file would require a four-byte field if stored as an ASCII table.)

3.1 DataElements

Table 3.1 identifies by object the data elements providing type, location, and length information.
The elements ITEMS and ITEM_BY TES are used to subdivide asingle COLUMN,
BIT_COLUMN or HISTOGRAM into aregular vector containing as many elements as specified
for the value of ITEMS. In these objectsthe DATA_TY PE must indicate the type of asingle
item in the vector. In the past, the data element ITEM_TY PE was used for this purpose, but
DATA_TYPE isnow the preferred parameter.

3.2 DataTypes

Table 3.2 identifies the valid values for the DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TY PE data e ements used in PDS data object definitions. The values for these
elements must be one of the standard values listed in the Planetary Science Data Dictionary
(PSDD). Please note:

?? Inall cases, these standard values refer to the physical storage format of the datain
the datafile.

?? In some cases, obsolete values from previous versions of the PDS Standards have
been retained as aliases for more specific values (the type “INTEGER”, for example,
isinterpreted as“ MSB_INTEGER” when it is encountered). In these cases the m ore
specific value should always be used in new data sets— the obsolete value is retained
only for backward compatibility. Obsolete values are indicated in the table.

?? Aliases have been supplied for some of the generic data types that indicate the kind of
system on which the data originated. For example, “ MAC_REAL” isan aliasfor
“IEEE_REAL", but “VAX_REAL” hasno dlias, asthe VAX binary storage format is
uniqgueto VAX systems. In general, the more generic termis preferred, but the
system-specific version may be used if needed.

Chapter 3. DATA_TYPE Definitions and Data File Storage Formats

Table 3.1: Type Elements Used in Data L abel Objects

Data Object

COLUMN
(without ITEMS)

COLUMN
(with ITEMS)

BIT_COLUMN
(without ITEMS)

BIT_COLUMN
(with ITEMS)

IMAGE

HISTOGRAM

Data Elements

DATA_TYPE
START_BYTE
BYTES

DATA_TYPE
START_BYTE

BYTES (optional)

ITEMS
ITEM_BYTES

BIT_DATA_TYPE

START BIT
BITS

START BIT
BITS (optional)
ITEMS
ITEM_BITS

SAMPLE_TYPE
SAMPLE_BITS

DATA_TYPE
BYTES (optional)
ITEMS
ITEM_BYTES

Notes

diasfor ITEM_TYPE

total bytesin COLUMN

bytesin each ITEM

total bitsin BIT_COLUMN

bitsin each ITEM

dliasfor ITEM_TYPE

total bytesin HISTOGRAM
number of binsin HISTOGRAM
bytesin each ITEM

Chapter 3. DATA_TYPE Vaues and Data File Storage Formats 33

Table 3.2: Standard PDS Data Types

Data Element Usage Codes:

D = DATA_TYPE
B = BIT_DATA_TYPE
S = SAMPLE TYPE
Usage Value Description
D ASCII_REAL ASCII character string representing areal number; see
Section 5.4 for formatting rules
D ASCII_INTEGER ASCII character string representing an integer; see
Section 5.4 for formatting rules
D ASCII_COMPLEX ASCII character string representing a complex number;
see Section 5.4 for formatting rules
Obsolete BIT_STRING aliasfor MSB_BIT_STRING
D,B BOOLEAN True/False Indicator: a 1-, 2- or 4-byteinteger or 1-32 bit
number. All 0 = Falsg; anything else = True.
D CHARACTER ASCII character string; see Section 5.4 for formatting
rules
Obsolete COMPLEX aliasfor IEEE_COMPLEX
D DATE ASCII character string representing adat ein PDS
standard format; see Section 5.4 for formatting rules
D EBCDIC_CHARACTER EBCDIC character string
Obsolete FLOAT aliasfor IEEE_REAL
D IBM_COMPLEX IBM 360/370 mainframe complex number (8- or 16-
byte)
D, S IBM_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte signed
integers
D,S IBM_REAL IBM 360/370 mainframe real number (4- or 8-byte)
D,B,S IBM_UNSIGNED_INTEGER IBM 360/370 mainframe 1-, 2-, and 4-byte unsigned
integers
D IEEE_COMPLEX 8-, 16-, and 20-byte complex numbers
D, S IEEE_REAL 4-, 8- and 10-byte real numbers
Obsolete INTEGER aliasfor MSB_INTEGER
D LSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D,S LSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B, S LSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D MAC_COMPLEX aliasfor IEEE_COMPLEX
D,S MAC_INTEGER aliasfor MSB_INTEGER
D,S MAC_REAL aliasfor IEEE_REAL
D,B,S MAC_UNSIGNED_INTEGER aliasfor MSB_UNSIGNED_INTEGER
D MSB_BIT_STRING 1-, 2-, and 4-byte bit strings
D,S MSB_INTEGER 1-, 2-, and 4-byte signed integers
D,B,S MSB_UNSIGNED_INTEGER 1-, 2-, and 4-byte unsigned integers
D,B N/A Used only for spare (or unused) fields included in the

datafile.

D

D,S
D,S
D,B,S

Obsolete

D
D,
D,
D,
D

Obsolete

D
D

A

S
S
B,S

Chapter 3. DATA_TYPE Definitions and Data File Storage Formats

PC_COMPLEX
PC_INTEGER

PC_REAL
PC_UNSIGNED_INTEGER
REAL

SUN_COMPLEX
SUN_INTEGER

SUN_REAL
SUN_UNSIGNED_INTEGER
TIME

UNSIGNED_INTEGER
VAX_BIT_STRING
VAX_COMPLEX

VAX_DOUBLE
VAX_INTEGER
VAX_REAL

VAX_UNSIGNED_INTEGER
VAXG_COMPLEX
VAXG_REAL

3.3 Binary Integers

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields:
most significant byte first (MSB) and least significant byte first (LSB) architectures. The MSB
architectures include IBM mainframes, many UNIX systems such as SUN, and Macintosh
computers. The LSB architecturesinclude VAX systems and IBM PCs. In the original PDS
system the default format was M SB, thus the designation of “INTEGER” and
“UNSIGNED_INTEGER” asaliasesof “MSB_INTEGER” and“MSB_UNSIGNED _IN-
TEGER”. New data sets should be prepared using the appropriate specific designation from

Table 3.2, above.

3.4 Signed vs. Unsigned Integers

The® INTEGER” datatypesrefer to signed, 2's complement integers. Use the corresponding
“ UNSIGNED_INTEGER” type for unsigned integer and bit string fields.

8-, 16-, and 20-byte complex numbers in IBM/PC format
aliasfor LSB_INTEGER

4-, 8-, and 10-byte real numbersin IBM/PC format
aliasfor LSB_UNSIGNED_INTEGER

aliasfor IEEE_REAL

aliasfor IEEE_COMPLEX

aliasfor MSB_INTEGER

aliasfor IEEE_REAL

aliasfor MSB_UNSIGNED_INTEGER

ASCII character string representing a date/timein PDS
standard format; see Section 5.4 for formatting rules

aliasfor MSB_UNSIGNED_INTEGER
aliasfor LSB_BIT_STRING

Vax F-, D-, and H-type (8-, 16- and 32-byte,
respectively) complex numbers

aliasfor VAX_REAL
aliasfor LSB_INTEGER

Vax F-, D-, and H-type (4-, 8- and 16-byte, respectively)
real numbers

aliasfor LSB_UNSIGNED_INTEGER
Vax G-type (16-byte) complex numbers
Vax G-type (8-byte) real numbers

Chapter 3. DATA_TYPE Vaues and Data File Storage Formats 35

3.5 Floating Point Formats

The PDS default representation for floating point numbersisthe ANSI/IEEE standard. Thi s
representation is defined as the IEEE_REAL data type, with aliases identified in Table 3.2.
Several additional specific floating-point representations supported by PDS are described in
Appendix C.

3.6 Bit String Data

The BIT_STRING data types are used in definitions of table columns holding individual bit field
values. A BIT_COLUMN object defines each bit field. BIT_STRING data types can be 1, 2-, or
4-byte fields, much like a binary integer. Extraction of specific bit fields within a 2- or 4-byte
BIT_STRING is dependent on the host architecture (MSB or LSB). In interpreting bit fields
(BIT_COLUMNS) withinaBIT_STRING, any necessary conversions such as byte swapping
from LSB to MSB are donefirst, then bit field values (START_BIT, BITS) are used to extract
the appropriate bits. This procedure ensures that bit fields are not fragmented due to differences
in hardware architectures.

3.7 Character Data
Specification of character field format in ASCII and binary files pending.

3.8 Format Specifications
Data format specifications provided in the FORMAT element serve two purposes:

1. Inan ASCII datafile, they provide aformat which can be used in scanning the ASCII
record for individual fields; and

2. Inabinary datafile, they provide aformat that can be used to display the binary values.

A subset of the FORTRAN data format specifiersis used for the values of FORMAT elements.
Valid specifiers include:

Aw Character data value
lw Integer value
Fw.d Floating point value, displayed in decimal format

Ew.d[E€] Floating point value, displayed in exponential format
Where:

w isthetotal number of positionsin the output field (including sign, decimal point, and
exponentiation character — usually “E” —if any);

d isthe number of positions to theright of the decimal point;

e isthenumber of positionsin exponent length field.

3-6 Chapter 3. DATA_TYPE Definitions and Data File Storage Formats

3.9 Internal Representationsof Data Types

Appendix C contains the detailed internal representations of the PDS standard data types listed in
Table 3.2.

The PDS has devel oped tools designed to use the specifications contained in Appendix C for
interpreting data values for display and validation.

Chapter 3. DATA_TYPE Vaues and Data File Storage Formats

aliases
for datatypes, 3-1
binary data
bit string format, 3-5
integer formats, 3-4
bit field representation, 3-5
BIT_COLUMNS 3-5
BIT DATA_TYPE
standard values, 3-1
BIT_STRING, 3-5
datatype
data elements, 3-1
datatypes
table of data element, 3-2
table of standard values, 3-3
DATA_TYPE
standard values, 3-1
floating point, 3-5
floating point representation, 3-5
format specifications, 3-5
for ASCII datafiles, 3-5
for binary datafiles, 3-5
integer representations
least significant byte first (LSB), 3-4
most significant byte first (MSB), 34
signed vs. unsigned, 3-4
ITEM_TY PE (obsolete), 3-1
ITEMS, 3-1
L SB integers. See integer representations
MSB integers. See integer representations
Planetary Science Data Dictionary (PSDD), 3-1
SAMPLE_TYPE
standard values, 3-1
storage formats
binary integers, 3-4

3-7

Chapter 4. Data Products 4-1

Chapter 4. Data Objects and Products

At its simplest, a data product consists of a PDS label and the data object that it describes. More
complex data products may contain several mutually dependent data objects, a primary object
and one or more secondary objects, or both. In all cases, asinglelabel is used to describe all
parts of the product (even if they are held in separate physical files). A single PRODUCT _ID
value is defined for the entire set in that PDS label.

A data product is one component of a data set (see the Data Set/Data Set Collection Contents
and Naming chapter of this document).

Primary Data Object
A primary data object is a set of results from a scientific observation. Primary data objects are
usually described using one of these PDS object structures:

TABLE
IMAGE
SERIES
SPECTRUM

Secondary Data Object

A secondary data object is any data used for processing or interpreting the primary data object(s),
for example, a histogram derived from an image. Secondary data objects are usually described
using one of these PDS object structures:

HISTOGRAM
PALETTE
HEADER

The PDS data product label, written in Object Description Language (ODL) (see the Object
Description Language (ODL) Specification and Usage chapter of this document), defines both
the physical and logical structure of the constituent data object(s).

4-2 Chapter 4. Data Products

4.1 DataProduct File Configurations

The PDS label and data object may be in the samefile or separate files. For data products with
more than one object, the data objects may be in one or morefiles. In al cases, however, there
must be exactly one PDS label containing exactly one PRODUCT _ID value. The PRODUCT _ID
value must be unigue within the data set containing this data product.

Example

Consider a data product that consists of a 3-color image in which each color plane is stored in a separate physical
file (that is, one file each for red, blue and green). Since all three colors are required to get the full image, this
product contains three mutually dependent primary objects.

The label for this data product will contain a single PRODUCT _ID, three pointers to the separate data files, and
three IMAGE object definitions. To aid in distinguishing between data files, the data preparer may also choose to
include an IMAGE_ID keyword in each IMAGE object definition. The resulting PDS label would contain the
following lines:

PRODUCT | D = "22A190"
ARED | MAGE = "22A190R | M3
AGREEN | MAGE = "22A190G | MG
ABLUE | MAGE = "22A190B. | MG
OBJECT = RED | MAGE

| MAGE | D = "22A190- RED'
END_OBJECT = RED | MAGE
OBJECT = GREEN | MAGE

| MAGE | D = "22A190- GREEN"
END_OBJECT = GREEN | MAGE
OBJECT = BLUE | MAGE

| MAGE | D = "22A190- BLUE"
END_OBJECT = BLUE | MAGE

Figure 4.1 illustrates file configurations for a data product with a single data object.

Chapter 4. Data Products

@ Attached Label
file A

PRODUCT_ID=A FDS Label
Primary Data Object

@ Detached Label
file A
FRODUCT _ID= A PDS Label
file B
Primary Data Object

Figure 4.1 Data Product with a Single Data Object

Figure 4.2 shows the possible file configurations for a single data product consisting of one
primary and one secondary data object. Similar examples could be made using data products
composed of more than two data objects.

Attached Label
PRODUCT_ID = A

Chapter 4. Data Products

file A

PDS Label

Attached Label
PRODUCT ID=A

Primary Data Object
Secondary Data Object

file A

PDS Label

FRODUCT_ID =B

Primary Data Object

file B

PDS Label

Detached Label

Secondary Data Objact

file A

)

FPDS Label

PRODUCT_ID=A

file B

Primary Data Object
Secondary Data Object

)

Detached Label
PRODUCT_ID = A

file A

FDS Label

PRODUCT_ID=B

file B

Primary Data Object

file C

PDS Label

Combined Detached Label
PRODUCT ID= A

file D

Secondary Data Object

)
)

file A

PDS Label

file B

Primary Data Object

file C

Secondary Data Object

Figure4-2. Data Product with Multiple Data Objects

Chapter 4. Data Products

data product
and PRODUCT _ID, 4-1
definition, 4-1
file configurations, 4-2
label example, 4-2
primary data object, 4-1
seconday data object, 4-1
PRODUCT _ID, 4-1

4-1

Chapter 5. Data Product Labels 51

Chapter 5. Data Product Labels

PDS data product labels are required for describing the contents and format of each individual
data product within a data set. PDS data product labels are written in the Object Description
Language (ODL). The PDS has chosen to label the wide variety of data products under archival
preparation by implementing a standard set of data object definitions, data € ements, and
standard values for the elements. These data object definitions, data elements, and standard
values are defined in the Planetary Science Data Dictionary (PSDD). Appendix A of this
document provides general descriptions and examples of the use of these data object definitions
and data elements for labeling data products.

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format o f each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product labdl is attached at the beginning of the data product file. There
isone label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which contains a pointer to the data product file. Thereis one detached label file for every data
product file. The label file should have the same base name as its associated data file, but the
extension .LBL .

Combined Detached - A single PDS detached data product label fileis used to describe the
contents of more than one data product file. The combined detached label contains pointers to
individual data products.

NOTE: Although all three labeling methods are equally acceptable, the PDS tools do not
currently support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

5-2

Chapter 5. Data Product Labels

File A
PDS
LABEL
Attached Label
DATA
File A
PDS Detached Label
LABEL
\ File B
DATA
File A
PDS LABEL File B
Combined
DATA Detached Label
File C
l
DATA

Figure5.1 Attached, Detached, and Combined Detached PDS Labels

Chapter 5. Data Product Labels 5-3

5.1.2 Labd format

PDS recommends that |abels have stream record format, and line lengths of at most 80 characters
(including the CR/LF line terminators) so that the entire label can be seen on a computer screen
without horizontal scrolling. The carriage return and line feed (CR/LF) pair istherequired line
terminator for all PDS labels. (See the Record Formats chapter of this document.)

All valuesin a PDS label should be in upper case, except values for descriptive elements
(DESCRIPTION, NOTE, etc.). It is also recommended that t he equal signsin the labels be
aligned for ease of reading.

ASCII Character Set

All valuesin aPDS label must conform to the standard 7 -bit ASCII character set. Labels may
include characters in the range of ASCII ch aracters 32 through 127 (decimal), and the record
delimiters Line Feed (10 decimal) and Carriage Return (13 decimal).

Theremaining 7 -bit ASCII characters (1-9, 11, 12, and 14-31 decimal, which includes the
horizontal and vertical tab and form feed characters) are not permitted in PDS labels. Note that
the 8-bit characters 128 through 255 (decimal) are not used in the PDS as the interpretation of
these characters varies by operating system, computer platform, and font selected. Specifically,
extended-set characters with diacritical marks are not to be used as they are interpreted
differently by different applications.

Label Padding
When afixed length data file has an attached label, the label is padded with space characters
(ASCII 32 decimal) in one of the following ways:

1) Spaces are added after the label’s END <CR><LF> statement and before the data so that the
total of the labdl (in bytes) is anintegral multiple of the record length of the data. In this case,
LABEL_RECORDS is cdculated by dividing the total padded length of the label section, in
bytes, by the stated value of RECORD_BYTES.

Example

In the example below, thelabel portion of thefileis 7 x 324 = 2268 bytesin length, including blank fill between the
END<CR><LF> statement and the first byte of data. The actual data portion of the file starts at record 8 (i.e., the 1st
byte of the 8th record starts at byte (7 x 324)+1 = 2269)

RECORD_TYPE = FI XED_LENGTH<CR><LF>
RECORD_BYTES = 324<CR><LF>

FI LE_RECORDS = 334<CR><LF>
LABEL_RECORDS = 7<CR><LF>

N MAGE = 8<CR><LF>
END<CR><LF>

....blank fill....

dat a

5-4 Chapter 5. Data Product Labels

2) Each line in the label may be padded with space characters so that each line in the label has
the same record length as the datafile. In this case, the labdl line length may exceed the
recommended 80 characters; LABEL_RECORDS is the number of physical records in the label
section of thefile.

Example

In the example below, the label portion of the fileis 80 x 85 = 6800 bytes in length. Each linein the label portion of
thefileis 85 bytes long, the same length as each data record. Notice the blank space between the actual valuesin the
label and the line delimiters. In the example, the label is80 lineslong (i .e., 80 records long) and the data begin at
record 81. Note that the label is padded so that <CR><LF> arein bytes 84 and 85.

RECORD TYPE = FI XED LENGTH <CR><LF>
RECORD BYTES = 85 <CR><LF>
FI LE_RECORDS = 300 <CR><LF>
LABEL RECORDS = 80 <CR><LF>
ATABLE =81 <CR><LF>
END <CR><LF>
Dat a

5.2 DataProduct Label Content

5.2.1 Attached and Detached L abels

PDS data product labels have a general structure that is used for all attached and d etached labels,
except for data products described by minimal labels. (Minimal labels are described in Section
5.2.3)

LABEL STANDARDS identifier

FILE CHARACTERISTIC data elements
DATA OBJECT pointers
IDENTIFICATION data e ements
DESCRIPTIVE data el ements

DATA OBJECT DEFINITIONS

END statement

3IIIII

Figure 5.2 provides an example of how this general structure appears in an attached or detached
label for a data product file containing multiple data objects.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION _ID

/*FILE_CHARACTERISTICS */
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

"POINTERS TO DATA OBJECTS */
MMAGE

MHISTOGRAM

MIDENTIFICATION DATA ELEMENTS i
DATA_SET_ID

PROD UGT_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME

wm uwonmwnmn

PRODUCT_CREATION_TIME =

{"DESCRIPTIVE DATA ELEMENTS */
FILTER_MNAME =
OFFSET_MODE_ID =

[*DATA OBJECT DEFINITIONS */

OBJECT = |[MAGE
END_OBJECT - IMAGE
OBJECT — HISTOGRAM
END_OBJECT — HISTOGRAM
EMND

5-5

= LABEL STANDARDS
IDENTIFIERS

* FILE CHARACTERISTICS
DATA ELEMENTS

» DATA OBJECT POINTERS
(primary, secondary)

= IDENTIFICATION DATA
ELEMENTS

* DESCRIPTIVE DATA
ELEMENTS

= DATA OBJECT
DEFINITIONS
(primary, secondary)

 END STATEMENT

Figure5.2 PDS Attached / Detached Label Structure

5-6 Chapter 5. Data Product Labels

5.2.2 Combined Detached L abels

For the Combined Detached label option, the general label structure is modified slightly to
reference each individual file within its own FILE object explicitly. In addition, identification
and descriptive data elements that apply to all of the files can be located before the FILE objects.

?? LABEL STANDARDS identifiers
?? IDENTIFICATION data elements that apply to al referenced data files
?? DESCRIPTIVE data elements that apply to all referenced data files
?? OBJECT=FILE statement (Repeatsfor each data product file)

z%5 FILE CHARACTERISTIC data e ements

2 DATA OBJECT pointers

225 IDENTIFICATION data €l ements

z#< DESCRIPTIVE data € ements

z2s DATA OBJECT DEFINITION
?? END_OBJECT=FILE statement
?? END statement

Figure 5.3 provides an example of how this general structure appears in a combined detached
label that describes more than one data product file.

Chapter 5. Data Product Labels

PDS LABEL

PDS_VERSION_ID

DATA_SET_ID

PRODUCT_ID
SPACECRAFT_ID
INSTRUMENT_NAME
TARGET_NAME
PRODUCT_CREATION_TIME

OBJECT - FILE
RECORD TYPE _
FILE_ RECORD "
ATIME_SERIES = "FILEA"
START TIME -
STOP_TIME -
OBJECT = TIME_SERIES
END_OBJECT - TIME_SERIES
END_OBJECT = FILE
OBJECT = EILE
RECORD_TYPE =
FILE_ RECORD =
ATIME_SERIES = “FILEB"
START TIME -
STOP_TIME "
OBJECT = TIME_SERIES
END_OBJECT = TIME_SERIES
END _OBJECT = FILE

END

5-7

LABEL STANDARDS
* IDENTIFIERS

= |DENTIFICATICN &
DESCRIFTIVE DATA ELEMENTS
for all files

* For Detached FILE A:
FILE CHARACTERISTICS
DATA ELEMENTS

= DATA OBJECT POINTERS

= |IDENTIFICATION/DESCPRITIVE
DATA ELEMENTS

» DATA OBJECT DEFINITIONS

For Detached FILE B:
= FILE CHARACTERISTICS
DATA ELEMENTS

* DATA OBJECT POINTERS

* |[DENTIFICATION/DESCRIPTIVE
DATA ELEMENTS

* DATA OBJECT DEFINITIONS

= END STATEMENT

Figure 5.3 PDS Combined/ Detached PDS Label Structure

5-8 Chapter 5. Data Product Labels

5.2.3 Minimal Labes

Use of the minimal label option is only allowed when the format of the data cannot be supported
by any PDS data object structure other than the FILE object.

For minimal labels the required use of data objectsiswaived. A minimal label does not require
any explicit PDS data object definitions or pointers to data objects. This applies to both attached
and detached | abels.

Minimal labels must satisfy the following requirements:
(1) Providethe ability to locate the data associated with the label.

la Attached |abdls

Since data objects and pointers are not required in the minimal label, by definition
the data follow immediately after the label.

1b. Detached Labels

Both the implicit and explicit use of the FILE object are supported. The
FILE_NAME keyword is required in the explicit FILE object, or in the |abel itself
if no FILE object isincluded.

(2) Providethe ability to locate a description of the format/content of the data. One of the
following must be provided in the minimal |abel:

2a. ADESCRIPTION = “<filename>"
Thisis apointer to afile containing a detailed description of the data format,

which may be located in the same directory as the data or in the DOCUMENT
subdirectory.

2b. DESCRIPTION = “<text appears here>"
Thisis either a detailed description of the datafile, its format, data types, and use,
or it isareference to adocument available externally, e.g., a Software Interface
Specification (SIS) or similar document.

(3) When minimal labels are used, DATA_OBJECT_TYPE = FILE should be used in the
DATA_SET catalog file

Chapter 5. Data Product Labels

5231 Implicit File Object (Attached and Detached Minimal L abel)
The general structure for minimal 1abels with implicit file objects is as follows:

?? LABEL STANDARDS identifier

FILE CHARACTERISTIC data elements
IDENTIFICATION data € ements
DESCRIPTIVE data e ements

7
7
7
?? END statement

5232 Explicit File Object (Detached Minimal Label)
The general structure for minimal labels with explicit file objectsis as follows:

?? LABEL STANDARDS identifier
?? IDENTIFICATION data € ements
?7? DESCRIPTIVE data elements
?? OBJECT=FILE statement
&% FILE CHARACTERISTIC data € ements

?? END_OBJECT=FILE
?? END statements

Figure 5.4 provides an example of how this general structure appears in a detached minimal
label. Inthis example, an implicit FILE object is used.

5-9

5-10

5.3 Detailed Label Contents Description

e N 1 IR LA -

MIDENTIFICATION DATA ELEMENTS */
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT _NAME
TARGET_NAME
START_TIME
STOP_TIME

mn uwmwwmwn

PRODUCT_CREATION_TIME =

M"DESCRIPTIVE DATA ELEMENTS */
FILTER_MAME =
OFFSET_MODE_ID
ADESCRIPTION

END

Chapter 5. Data Product Labels

= IDENTIFICATION DATA
ELEMENTS

* DESCRIPTIVE DATA
ELEMENTS

s END STATEMENT

Figure 5.4 PDS Detached Minimal Label Structure

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers,
identification data elements, descriptive data elements, data object definitions, and the END

statement.

5.3.1 Labd Standardsldentifiers

Each PDS labd must begin with the PDS VERSION_ID data element. This element identifies
the published version of the Standards to which the label adheres, for purposes of both validation
as well as software development and support. For |abels adhering to the standards described in
this document (the PDS Standards Reference, Version 3.4), the appropriate valueis “PDS3":

Chapter 5. Data Product Labels 5-11

PDS_VERSI ON | D = PDS3

The PDS does not require Standard Formatted Data Unit (SFDU) labels on individual products,
but they may be desired for conformance with specific project or other agency requirements.
When SFDU labels are provided on a PDS data product, the SFDU label must precede the
PDS VERSION_ID keyword, thus:

CCsD. . .. [optional SFDU | abel]
PDS_VERSI ON_| D
LABEL_REVI S| ON_NOTE

SFDU labelsin PDS products must follow the format standards described in SFDU Usage
chapter in this document.

The LABEL_REVISION_NOTE element is afree form, unlimited -length character string
providing information regarding the revision status and authorship of aPDS labdl. It should
include at |east the latest revision date and the author of the current version, but may include a
complete editing history. This element isrequired in all catalog labels.

Example

PDS_VERSI ON_| D
LABEL_REVI S| ON_NOTE
rel ease; "
RECORD_TYPE
RECORD BYTES = 80

PDS3
"1999-08-01, Anne Raugh (SBN), initial

FI XED_LENGTH

5.3.2 FileCharacteristic Data Elements

PDS data product |abels contain data el ement information that describes important attributes of
the physical structure of a data product file. The PDSfile characteristic data elements are:

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TY PE data el ement identifies the record characteristics of the data product file. A
complete discussion of the RECORD _TY PE data el ement and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BY TES data e ement identifies the number of bytes in each physical record in the
data product file. The FILE_RECORDS data el ement identifies the number of physical records
inthefile. The LABEL_RECORDS data element identifies the number of physical records that
make up the PDS product labdl.

Not all of these data e ements are required in every data product | abel. Table 5.1 lists the
required (Req) and optional (Opt) file characteristic data elements for a variety of data products
and labeling methods for both attached (Att) and detached (Det) labels. Where (max) is
specified, the value indicates the maximum size of any physical record in thefile.

5-12 Chapter 5. Data Product Labels

Chapter 5. Data Product Labels 5-13

Table5.1: File Characteristic Data Element Requirements

Labeling Method |Att Det |Att Det Att Det |Att Det
RECORD_TY PE FIXED LENGTH |VARIABLE LENGTH | STREAM UNDEFINED
RECORD BYTES |Req Req |Rmax Rmax__ |Omax - - -
FILE_RECORDS Req Reqg |Reg Req [Opt Opt |- -
LABEL_RECORDS |Req - Req - Opt - - -

Note: The FILE_NAME keyword is required in detached minimal |abels.

5.3.3 Data Object Pointers

“Data objects” are the actual data for which the structure and attributes are defined in aPDS
label. Each data product file contains one or more data objects. The PDS uses a pointer within
the product labels to identify the file locations for all objectsin a data product.

Example

ATABLE
ATABLE

" DATA. DAT"
("DATA DAT", 10 <BYTES>)

5331 Use of Pointersin Attached L abels

Data object pointersare required in labels with one exception: attached |abels that refer to only a
single object. In the absence of a pointer, the data object is assumed to start in the next physical
record after the PDS product label area. Thisis commonly the case with ASCI| text files
described by a TEXT object and ASCII SPICE filesdescribed by a SPICE_KERNEL object. The
top twoillustrations in Figure 5.5 show example files that do not require data object pointers.

Object pointers are required for all data objects, even when multiple data objects are stored in a
single data product file. Data object pointersin attached labels take one of two forms:

A<object_identifier> = nnn

where nnn represents the starting record number within the file (first record is numbered 1),
Or,

A<object_identifier> = nnn <BYTES>
where nnn represents the starting byte location within the file (first byte is numbered 1).

See Chapter 12, Object Description Language (ODL) Specification and Usage, and Chapter 14,
Pointer Usage, in this document for a complete description of pointer syntax.

5-14

Chapter 5. Data Product Labels

The bottom two illustrations in Figure 5.5 show the use of required data object pointers for
attached label products containing multiple data objects.

END

TEXT

Record

1

1

31

5.3.3.2

LABEL
END v
F 3
SPICE
KERMEL DATA
b 4

ATABLE 1 =11
A"TABLE 2 =31

EMND

AMAGE = 161 <BYTES>
AHISTOGRAM = 640161 <BYTES>

END

>e

TABLE 1

TABLE 2

IMAGE

HISTOGRAM

LABEL

DATA

Figure 5.5 Data Object Pointers-Attached Labels

Use of Pointersin Detached and Combined Detached L abels

When the PDS data product label is a detached or a combined detached |abel, data object
pointers are required for all data objects referenced.

The syntax for these data object pointers takes one of three forms:

(1) "object_identifier
(2) "object_identifier

“filename’
(“filename”, nnn)

(3) Mobject_identifier = (“filename”, nnn <BYTES>)

Chapter 5. Data Product Labels 5-15

With respect to the above three cases:

(@) These object pointers reference either byte or record locations in data files that are
detached, or separate from, the label file.

(b) “Filename” isthe name of the detached datafile. Fil e names must be in uppercase
characters.

(c) When no offset is specified, the first record is assumed.

(d) Records and bytes are numbered from 1.

In the first case, the data object islocated at the beginning of the referenced file. In the second
case, the data object begins with the nnn™ physical record from the beginning of the referenced
file. Inthethird case, the data object begins with the nnn th byte from the beginning of the
referenced file.

Examples
N MAGE = ("DATA | MG')
~“ENG NEERI NG_TABLE = (" DATA. DAT", 10)
NTABLE = ("DATA TAB', 10 <BYTES>)

Figure 5.6 contains several examples of data object pointer usage for data product files with
detached or combined detached labels. The top example shows a data product consisting of a
HEADER data object and a TABLE data object together in a single file. The detached label for
this product includes pointers for both data objects, with the TABLE object starting at byte 601
of file A. The middle example illustrates a combined detached label for a data product contained
in two data objects, each in a separate file. A separate pointer is provided for each data object.
The bottom example shows a detached label for a data product containing multiple data obj ects.

The third example shows a complex data file structure. The HEADER object comesfirst in the
datafile and, as the pointer (“"HEADER”) shows, it requires no explicit offset (record 1 is
assumed). Two parallel objects, a TABLE and an IMAGE, then follow the header. For this
section of thefile, each record contains one row of the TABLE followed by one line of the
IMAGE. In the TABLE object description, the bytes of the IMAGE are accounted for as
ROW_SUFFIX_BYTES,; in the IMAGE object description, the bytes of the TABLE object are
accounted for as LINE_PREFIX_BYTES. Both objects start in the same record, and therefore
have the same offset (4). See the IMAGE and TABLE object descriptions for more information
on prefix and suffix bytes. Had this data file been organized sequentially (so that, for example,
the HEADER was followed by the TABLE, which in turn was followed by the IMAGE), then
each object would have had its own offset.

5333 Note Concerning Minimal Attached and Detached L abels

Data object pointers do nat exist in minimal labels. In these cases the format of the datais
usually fully described in a separate file or document.

5-16 Chapter 5. Data Product Labels

<— DATA—p
€«—— LABEL > Byte FILEA
1
5 g et | UEADER
e HEADER = "FILEA
- ATABLE = "FILEA", 601 <BYTES>)4
3601
TABLE
FILEA
_ ATABLE = "EILEA" >
EXAMPLE 2:
A SERIES = "FILEB" N TABLE
FILEB
SERIES
Record
A HEADER = "FILEA"— 1 HEADER
EXAMPLE 3: A IMAGE = (*FILEA®, 4)—
L
ATABLE = (FILEA", 4)———% 4 | = | mAGE
=L
'—

Figure 5.6 Data Object Pointers— Detached & Combined Labels

5.3.4 Data ldentification Elements

The data identification elements provide additional information about a data product that can be
used to relate the product to other data products from the same data set or data set col lection. The
minimum set of identification elements required by the PDS standards (see the following
subsections) is sufficient to populate a high-level database like, for example, the PDS central
catalog. In addition, data preparers will choose additional identification e ements from the
Planetary Science Data Dictionary (PSDD) to support present and future cataloging and search
operations.

NOTE: When adata preparer desires anew element for a data product label - one not yet
recorded in the PSDD - it can be proposed for addition to the dictionary. Contact a PDS Data
Engineer for assistance.

Chapter 5. Data Product Labels 5-17

5341 Spacecr aft Science Data Products

The following data identification elements must be included in product labels for al spacecraft
science data products:

DATA_SET ID
PRODUCT _ID

INSTRUMENT_HOST NAME
INSTRUMENT_NAME

TARGET _NAME

START_TIME

STOP TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

5342 Earthbased Science Data Products

The following data identification elements must be included in product labels for all Earth-based
science data products:

DATA_SET ID
PRODUCT D
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME

START TIME

STOP_TIME

PRODUCT CREATION_TIME

5.34.3 Ancillary Data Products

The following data identification elements must be included in product labels for al ancillary
data products. Ancillary products may be more general in nature, supporting a wide variety of
instruments for a particular mission. For example, SPICE data sets, genera | engineering data
sets, and uplink data are considered ancillary data products.

DATA_SET ID
PRODUCT D
PRODUCT CREATION_TIME

The following identification elements are highly recommended, and should be included in
ancillary data products whenever they apply:

INSTRUMENT_HOST NAME
INSTRUMENT_NAME

TARGET NAME

START_TIME

STOP TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

5-18 Chapter 5. Data Product Labels

5.3.5 Descriptive Data Elements

In addition to the data identification e ements required for various types of data, PDS stron gly
recommends including additional data elements related to specific types of data. These
descriptive e ements should include any elements needed to interpret or process the data objects
or which would be needed to catal og the data product to support potential search criteriaat the
product level.

Recommendations for descriptive data elements to be included come from the PDS mission
interface personnel as well as the data producer’ s own suggestions. These additional data
elements are selected from the Planetary Science Data Dictionary.

NOTE: When adata e ement is needed for a data product label, but is not yet recorded in the
PSDD, it may be proposed for addition to the dictionary. Contact a PDS data engineer for
assistance in submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in a PDS label to provide a shorthand method for referencing either
a set of descriptive data el ements (e.g., "DESCRIPTION) or along descriptive text passage
relevant to several data product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within the product label for each object in the
product, to describe the structure and associated attributes of each constituent object. Each object
definition, whether for a primary or a secondary object, must have a corresponding object pointer
as described in Section 5.3.3.

Object definitions are of the form:
OBJECT —aaa where aaa is the name of th e data object

END_OBJECT =asa

The PDS has designed a set of standard data object definitions to be used for labeling products.
Among these standard objects are those designed to describe structures commonly used for
scientific data storage. Appendix A provides the complete set of PDS object definition
requirements, along with examples of product labels.

Pointers are sometimes used in a PDS |abel to provide a shorthand method for including a
standard set of sub-objects referenced in several data product labels. For example, a pointer
called “*STRUCTURE” is often used to include a set of COLUMN sub-objects for a TABLE
structure used in many labels of the same data set.

Chapter 5. Data Product Labels 5-19

5.3.7 End Statement

The END statement ends a PDS label. Where required by an outside agency, the END statement
may be followed by one or more SFDU labels.

The PDS does not require SFDU labels on individual products, but they may be required to
conform with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.
In some, but not all cases, another SFDU labd is required after the PDS END statement to
provide “end label” and sometimes “start data” information.

54 Syntax for Element Values

The values of keywords must be expressed in a manner appropriate to the type of the keyword.
Datatypes for element values are specified in the element definitions contained in th e PSDD.
The syntax rules for expressing these values in PDS labels are discussed in detail in Section 12.3
of Chapter 12: Object Description Language Specification and Usage. A brief summary is
provided here for reference.

Character Strings

Character strings are enclosed in double quotes unless they consist entirely of uppercase |etter,
number, and/or underscore () characters.

Examples
NAME = FILTER Correct
NAME = "FI LTER WAVELENGTH' Correct
NAME = FI LTER_WAVELENGTH Correct
NAME = FI LTER WAVELENGTH Incorrect
Integers

Integer values must be presented as a string of digits, optionally preceded by a sign. Specifically,
no comma or point should be used to group digits. Values that are to be interpreted asintegers
must not be enclosed in quotation marks of any kind.

Examples
| TEMS =12 Correct
REQUI RED STCORAGE BYTES = 43364 Correct
| TEMS = "12" Incorrect
REQUI RED STORAGE BYTES = 43, 364 Incorrect

5-20 Chapter 5. Data Product Labels

Floating-Point Numbers

Real data values may be expressed as either floating-point numbers with a decimal point or in
scientific notation with an exponent. Scientific notation is formatted in the standard manner for
program 1/O, using the letter “E” as an exponentiation operator. Values that aret o beinterpreted
as real numbers must not be enclosed in quotation marks of any kind.

Examples
TELESCOPE_LATI TUDE = 33.476 Correct
TELESCOPE_LATI TUDE = 3. 3476E+01 Correct
TELESCOPE_LATI TUDE = "33. 476" Incorrect
TELESCOPE_LATI TUDE = 3.3476 x 10701 Incorrect

Dates and Times

Date and time values must be in the PDS standard date/time format: YYYY-MM-
DDThh:mm:ss.sss. Date and time values must never be enclosed in quotes of any kind.

Examples

START_TI ME

1990- 08-01T23: 59: 59 Correct

START_TI ME

"1990-08-01T23: 59: 59" Incorrect

Chapter 5. Data Product Labels

data elements
data identification, 5-16
descriptive, 5-19
file characteristics, 5-11
proposing new, 5-17
required and optional, 5-12
standards identifiers, 5-10
syntax
summary, 5-20
data identification data e ements, 5-16
data identification elements
required for ancillary data, 5-17
required for Earth-based data, 5-17
required for spacecraft data, 5-17
data objects
definition of, 5-13
object definitions 5-19
standard data objects, 5-19
data products
labels, 5-1
descriptive data elements, 5-19
END statement, 5-20
file characteristics data el ements, 5-11
FILE_NAME, 5-13
FILE RECORDS, 5-11
Label
structure
combined detached example, 5-7
LABEL_RECORDS 5-11
LABEL_REVISION_NOTE, 5-11
labels, 5-1
and SFDU labels, 5-11, 5-20
attached, 5-1
combined detached, 5-1, 5-6
descriptive text pointers, 5-19
detached, 5-1
END statement, 5-20
format, 5-3
character set, 5-3
minimal, 5-8, 5-9
Object Description Language (ODL), 5-1
object pointers, 513
attached label examples, 5-14
detached label examples, 5-15
padding, 5-3

5-21

5-2

pointers
to data objects, 5-13
to descriptive text, 5-19
to structurefiles, 5-19
standard data objects, 5-19
standards identifiers, 5-10
structure
attached and detached, 5-4
combined detached, 5-6
minimal, 5-9
minimal example 5-10
structure pointers, 5-19
Labels
structure
attached/detached example, 5-5
minimal label, 5-8
minimal labels, 5-15
object definitions
format, 5-19
Object Description Language (ODL), 5-1
object pointers, 5-13
attached label examples, 5-14
formats, 5-13
syntax, 5-14
Planetary Science Data Dictionary (PSDD), 5-1, 5-16, 5-19
pointers
structure pointers, 5-19
to descriptive text, 5-19
RECORD_BYTES, 5-11
RECORD_TYPE, 5-11
Standard Formatted Data Unit (SFDU), 5-11, 5-20
standards identifier data elements, 5-10

Chapter 5. Data Product Labels

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-1

Chapter 6. Data Set / Data Set Collection
Contents and Naming

The Data Set / Data Set Collection Contents and Naming standard defines the conventions for
maintai ning consistency in the contents, organization and naming of archive quality data sets .

Data Sets are defined in terms of Data Products, which were introduced in Chapter 4. A data set
IS an aggregation of data products with a common origin, history, or application. A data set
includes primary (observational) data plus the ancillary data, software, and documentation
needed to understand and use the observations. Filesin a data set share a unique data set name,
share a unique data set identifier, and are described by asingle DATA_SET catalog object (or
equivalent).

Data Set Collections are defined in terms of data sets. A data set collection is an aggregation of
several data sets that are related by observation type, discipline, target, or time which are to be
treated as a unit; that is, they are intended to be archived and distributed together. Data setsin a
data set collection share a unique data set collection name, share a unique data set collection
identifier, and are described by asingle DATA_SET_COLLECTION object (or equivalent).
One of the primary considerations in creating a data set collection is that the collection as a
whole provides more utility than the sum of the utilities of theindividual data s ets.

Figure 6.1 shows the relationships among Data Products, Data Sets, and a Data Set Collection.

DATA SET COLLECTION

|
| |

DATA SET #1 DATA SET #2

| !
—

PRIMARY PRIMARY AMCILLARY DATA PRODUCTS
DATA DATA — CALIBRATION

PRODUCT #1 PRODUCT #2 B =gkl
— DOCUMENTATION
— CATALOG INFORMATION
— INDEX FILES
— DATA DICTIONARY FILES
— GAZETTEER
— SOFTWARE

Figure 6.1 Relationshipsamong a Data Set Collection, its Data Sets, and their Data Products.

6-2 Chapter 6. Data Set/Data Set Collecti on Contents and Naming

Note that with respect to Figure 6.1, additional data sets (e.g., Data Set #2) have structure similar
to Data Set #1. And, Ancillary Data Products are often organized into directories corresponding
to the subject areas shown (see Chapter 19 for a more detailed description of each directory).

Ancillary Data Products may include any or al of the following:

Calibration - Data products used in the conversion of raw measurements to physically
meaningful values or data products needed to use the data.

Geometry - Data products needed to describe the observing geometry. Examplesinclude
SEDRs and SPICE files.

Documentation - Data products which describe the mission, spacecraft, instrument, and/or
dataset. These may include references to science papers or the papers themsel ves.

Catalog Information - Descriptive information about a data set expressed in Object
Description Language (ODL) and suitable for loading into a catalog. For more information,
see Appendix B.

Index Files- Information that allows a user to locate the data of interest - atable of contents.
An example might be a table mapping latitude/longitude ranges to file names.

Data Dictionary Files - An extract of the Planetary Science Data Dictionary (PSDD) that is
pertinent to the data set and expressed in ODL .

Gazetteer - Information about the named features on a target body associated with the data
Set.

Softwar e - Software libraries, utilities, and/or application programs to access/process the
data products.

6.1 Data Set Naming and I dentification

Each PDS data set must have a unique name (DATA_SET_NAME) and a unique identifier
(DATA_SET_1D), both formed from up to seven components. The components are listed here,
valid assignments for each component are described in Section 6.3:

Instrument host

Target

I nstrument

Data processing level number
Data set type (optional)
Description (optional)

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

Version number

A DATA_SET_NAME must not exceed 60 characters in length. Where the character limitation
is not exceeded, the full-length name of each component is used. If the full -length nameis too
long, an acronym is used to abbreviate components of the name. Where possible, each
component of the DATA_SET_NAME should identify and reflect the corresponding (acronym)
component used in forming the DATA_SET _ID.

The DATA_SET_ID cannot exceed 40 charactersin length. Each component of the
DATA_SET _ID isan acronym that identifies and reflects the corresponding (full -name)
component used in forming the DATA_SET_NAME. Withinthe DATA_SET_ID, acronyms are
separated by hyphens.

Multiple instrument hosts, instruments, or targets are referenced inaDATA_S ET_NAME or
DATA_SET_ID by concatenation of the values with aforward slash, "/", which isinterpreted as
"and." The slash may not be used in any other capacity ina DATA_SET _ID.

6.2 Data Set Collection Naming and I dentification

Each PDS data set collection must have a unique name (DATA_SET_COLLECTION_NAME)
and aunique identifier (DATA_SET_COLLECTION_ID), both formed from up to six
components. A data set collection may contain data sets that cover several targets, be of
different processing levels, or have different instrument hosts and instruments. Since the
individual data setswill be identified by their own data set names, some of this information need
not be repeated at the collection level. Therefore, the DATA_SET_COLLECTION_NAME uses
asubset of the DATA_SET_NAME components in addition to a new component, the collection
name, which identi fies the group of related data sets. The components are listed here; valid
assignments for each component are described in Section 6.3:

Collection name

Target

Data processing level number (optional)
Data set type (optional)

Description (optional)

Version number

A DATA_SET_COLLECTION_NAME must not exceed 60 characters in length. Where the
character limitation is not exceeded, the full -length name of each component isused. If the full -
length name is too long, an acronym should be substituted. Where pos sible, each component of
the DATA_SET_COLLECTION_NAME should identify and reflect the corresponding
(acronym) component used in forming the DATA_SET_COLLECTION_ID.

The DATA_SET_COLLECTION_ID must not exceed 40 characters in length. Each component
is an acronym that identifies and reflects the corresponding (full -name) component used in
forming the DATA_SET_COLLECTION_NAME.

6-4 Chapter 6. Data Set/Data Set Collecti on Contents and Naming

Multiple targets or data processing levels are referenced in the data set collection name or
identifier by concatenation of the val ues with aforward slash (/) which is interpreted as "and.”

6.3 Nameand ID Components

6.3.1 Restrictionson DATA_SET ID and DATA_SET_COLLECTION_ID

Withinthe DATA_SET _ID and DATA_SET_COLLECTION_ID, acronyms are separated by
hyphens. The only characters allowed are:

?? Uppercase characters, A-z

?? Digits, 0-9

?? The hyphen character, " -"

?? Theforward slash, "/"

?? The period character, ".", but only as part of a numeric component (e.g., " v1.0" but not
"CA")

6.3.2 Standard Acronyms, Abbreviations, and Assignments

This section details the standard acronyms and abbreviations required for formulating the
DATA_SET_ID and DATA_SET_COLLECTION_ID values. They are also recommended for
use, as appropriate, in the formation of other NAME - and ID-class el ement values. Standard
values for data dictionary elements mentioned in the following sections are listed in the PSDD.
New values are added to these lists as needed by the PDS data engineers.

1. Instrument host name and ID values are selected from the standard value list of the
corresponding PSDD entry (INSTRUMENT_HOST_NAME or INSTRUMENT_HOST _ID
data element). Note that the acronym EAR has been used for Earth -based data sets without a
specific instrument host.

2. Coallection names and I Ds are created as needed by the data preparers in conjunction with
the PDS data engineer. Current IDs and their corresponding nam es include:

GRSFE Geological Remote Sensing Field Experiment
IHW International Halley Watch
PREMGN Pre-Magellan

3. Target name values are selected from the standard values listed in the PSDD for the
TARGET_NAME element. Target acronyms are selected from the following list:

Target ID Target Name

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-5

Asteroid
Comet

AL Calibration
Dust

Earth
Mercury
Jupiter

Moon

Mars
Meteorite
Neptune
Pluto

Ring

Saturn
Satellite
Solar System
Uranus
Venus

Other, (e.g., Checkout)
Sky

ooO>»

SEIr«eTmo

m
—

-<><<C83%U);U'UZ

NOTE: Satellites or rings arereferenced in DATA_SET_NAME sand DATA_SET IDsby
the concatenation of the satellite or ring identifier with the associated planet identifier; for
example:

JR Jupiter’srings
JSA Jupiter’s satellites

If Jupiter data are also included in the ring and/or satellite data set then only Jupiter (*J’) is
referenced as the target.

Note that in some cases this component represents the TARGET_TY PE rather than the target
name, for example:

A Asteroid

C Comet
CAL Cdlibration
MET Meteorite

Valid values for the TARGET _TY PE data element are listed in the PSDD.

Instrument name and 1D values are taken either from the corresponding PSDD element, or
from the following list of values designated for certain types of ancillary data:

Names: INSTRUMENT_NAME data element in the PSDD
IDs: INSTRUMENT _ID data element in the PSDD

Chapter 6. Data Set/Data Set Collecti on Contents and Naming

Ancillary Data: ENG or ENGINEERING for engineering data sets

SPICE for SPICE data sets

GCM for Global Circulation Model data
SEDR for supplemental EDR data

POS for positional data

5. Data processing level number isthe National Research Council (NRC) Committee on Data
Management and Computation (CODMAC) data processing level number.

Normally a data set contains data of one processing level. PDS recommends that data of
different processing levels be treated as different data sets. However, if it is not possible to
separate the data, then a single data set with multiple processing levels will be accepted. Use
the following guidelines when specifying the data processing level number component of the
data set identifier and name:

(@) the processing level number of the | argest subset of data or
(b) the highest processing level number if there is no predominant subset.

Level Type Data Processing L evel Description

1 Raw Data Telemetry data with data embedded.

2 Edited Data Corrected for telemetry errors and split or decommutated into a data set for a given
instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Corresponds to NASA Level O data.

3 Calibrated Data Edited data that are still in units produced by i nstrument, but that have been corrected
so that values are expressed in or are proportional to some physical unit such as
radiance. No resampling, so edited data can be reconstructed. NASA Leve 1A.

4 Resampled Data Datathat have been resampled in the ti me or space domainsin such away that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level IB.

5 Derived Data Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

6 Ancillary Data Nonscience data needed to generate calibrated or resampled data sets. Consists of
instrument gains, offsets, pointing information for scan platforms, etc.

7 Correlative Data Other science data needed to interpret space-based data sets. May include ground-
based data observations such as soil type or ocean buoy measurements of wind drift.

8 User Description Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary user to extract information from
the data.

N N Not Applicable

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-7

6. Data set type provides additional identification if, for example, the CODMAC data
processing level component is not sufficient to identify the type or level of data. Following is
alist of valid IDs and names that may be used for this component.

NOTE: Several of the values in this table are currently unique to a particular mission (e.g.,
BIDR and MIDR were used on Magellan). These values may be used on other missions, if
deemed appropriate.

ID Name
ADR Analyzed Data Record
BIDR Basic Image Data Record
CDR Composite Data Record
CK SPICE CK (Pointing Kernel)
DDR Derived Data Record
(possibly multiple instruments)
DIDR Digitalized Image Data Record
DLC Detailed Level Catalog
EDC Existing Data Catalog
EDR Experiment Data Record
EK SPICE EK (Event Kernel)
GDR Global Data Record
IDR Intermediate Data Record
IK SPICE IK (Instrument Kernel)
LSK SPICE LSK (Leap Second Kernel)
MDR Master Data Record
MIDR M osai cked Image Data Record
ODR Original Data Record
PCK SPICE PCK (Planetary Constants Kernel)
PGDR Photograph Data Record
RDR Reduced Data Record
REFDR Reformatted Data Record
SDR System Data Record
SEDR Supplementary Experiment Data Record
SPK SPICE SPK (Ephemeris Kerndl)
SUMM Summary (data) (to be used in the browse function)
SAMP Sample data from a data set (not subsampled data)

7. Description isoptional, but allows the data provider to describe the data set better —for
example, to identify a specific comet or asteroid. Following isalist of example values (both
IDs and names) that can be used for this component.

6-8

Chapter 6. Data Set/Data Set Collecti on Contents and Naming

ALT/RAD Altimetry and Radiometry

BR Browse

CLOUD Cloud

ELE Electron

ETA-AQUAR Eta-Aquarid Meteors
FULL-RES Full Resolution
GIACOBIN-ZIN Comet P/Giacobini-Zinner
HALLEY Comet P/Halley

ION lon

LOS Line of Sight Gravity

MOM Moment

PAR Parameter

SA Spectrum Analyzer
SA-4.0SEC Spectrum Analyzer 4.0 second
SA-48.0SEC Spectrum Analyzer 48.0 second

8. Version number is determined as follows:

(@

(b)

6.4 Examples

If thereis not a previous version of the PDS data set/data set collection, then use
Version 1.0.

If a previous version exists, then PDS recommends the following:

If the data sets/data set collections contain the same set of data, but use a
different medium (e.g., CD-ROM), then no new version number is

required (i.e., no new data set identifier). The invent ory system will handle
the different media for the same data set.

If the data sets/data set collections contain the same set of data, but have
minor corrections or improvements such as a change in descriptive
labeling, then the version number isinc remented by a tenth. For example,
V1.0 becomes V1.1

If adata set/data set collection has been reprocessed, using, for example, a
new processing algorithm or different calibration data, then the version
number isincremented by one (V1.0 would become V2.0). Also, if one
data set/data set collection contains a subset, is a proper subset, or isa
superset of another, then the version number is incremented by one.

For a data set containing the first version of Mars Cloud Data derived from the Mariner 9, Viking
Orbiter 1, and Viking Orbiter 2 imaging subsystems, the data set name and identifier would be :

DATA_SET_NAME = "MR9/V01/V02 MARS I SS/VIS 5 CLOUD V1. 0"

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-9

DATA SET_ID = "MR9/V01/V02-M 1SS/ VI S-5- CLOUD- V1. 0"
In this example the optional data set typeis not used. The other components are:

?? Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2

?? TargetisMars

?? Instruments are the Imaging Science Subsystem and Visual Imaging Subsystem
?? Data Processing Level number is5

?? Descriptionis CLOUD

?? Version number isV1.0

Note that the individual componentsinthe DATA _SET _ID closely match the corresponding
components used inthe DATA_SET_NAME.

The Pre-Magellan Data Set Collection contains radar and gravity data similar to the kinds of data
that Magellan collected and was used for pre-Magellan analyses of Venus and for comparisons to
actual Magellan data. In conversation the data set might be described as Pre -Magellan Earth,
Moon, Mercury, Mars, and Venus Resampled and Derived Radar and Gravity Data Version 1.0.
The data set collection name and 1D were:

"PRE- MAGELLAN E/ L/IH MV 4/ 5 RADAR GRAVI TY
DATA V1. 0"

DATA_SET_COLLECTI ON_NAME

DATA _SET_COLLECTI ONLI D "PREMGN- E/ L/ H M V- 4/ 5- RADY GRAV- V1. 0"

6-10 Chapter 6. Data Set/Data Set Collecti on Contents and Naming

A I

ancillary data product

(60011 01T TSP PPP PP 6-2

(o001 Y (0 =0 = 0 1) SRR 6-2
archive quality

(012 162 1 RPN 6-1

01z e RS Aol 1= ot i o] o O RS 6-1

uél#
(o [o) = (0] e = - LSRR PRRTR 6-2
(o= = [olo 1101107 1 o o PSPPSR 6-2
CODMAC NUMDELS ..ottt siee e cesieesieesseeseeesseesseesseess ssseesseessenns See data processing level
%

(0= e Mo [Toi L0 7= Y L1 =S TP 6-3
0ata ProCESSING [EVEL ..ot e cestee st e e e e sae e sreesaee s sereesseesaeeans 6-7

CODMA C NUIMDEN'Sc.eeiiieiiiesiiesiee e sie satesseeseessessessesteses stesssesssesasesssesssesssesnses seessesssenns 6-6
data product

(S = Lo g (o) = = SRR 6-1

relation to data St COIIECIONcc.ei it e et 6-1
data set

(60011 01T TSP PPPTPUPRRT 6-1

(01 11 0o o SRR 6-1

NaMING and IdENLITICALIONc.eiiiiiiiieieies e ceeeeee e e seesaeeene saeas 6-3

PrOCESSING [EVEL. ...t e sae caeesreesaeesae e s e e saeesreesaes eesseesneesneeaneas 6-7

relation 0 data PrOUUCEScceiiiiiieiiirie e ettt eesatesneeseesneesneeeneesnees seenees 6-1

reprocessed, VErSION NUMDEYcociiiiiiiiiiiieris ceerie et eeeseesneesseesseesaeesneesneens 6-9
data set collection

(60011 01T TSP PPPT PP 6-1

(o001 Y (0 =0 = 0 1) USSR 6-2

(01 11 0T o o SRR 6-1

NaMING and IdENLITICALIONc.ooiiiiiiiieieies e ceeeeee e e seesreeeae saeas 6-4

relation 0 data PrOUUCEScoeiiieiie e et eeesteseeeeesee st e eneesnees seenes 6-1

reProcesSed, VEISION NUIMDEYccciiiiiiieieeieres ceeeeesieseeseesseeseesees seeseessseseesseeseessenssenns 6-9
data set description

210 (0017 1 PP PP RPN 6-8
data set type

210 (01017 1 TP PP RPN 6-7
DATA_SET_COLLECTION_ID

CONSLITUENT COMPONENESeutieieieiieeiieeiesiiees ceteeeeseesseeseeseesseesae saeesseesseesseesseesseesseasses eesses 6-4

(012 6 BT 1Y =PRSS 6-7

(0155 ox 1] o 1o o SRS 6-8

6-2 Chapter 6. Data Set/Data Set Collecti on Contents and Naming

EXAIMPIE .t e hee et eeaaes teeneeseeaeeaneeeeeaneeas 6-10
standard acronyms and abbreviationsoceoveeiiiiiiis ceeieeee e e 6-5
SYIMEBX .ttt e ettt e it e e eie —eetee e e et e e e e e e e e e e e e e an feeahEeeeaaRneeeaneeeaaRneeas eeeeareeeeareeeaareeeanrnees an 6-4
VEFSION NUMDEY ...t ettt tes feebeesbeesseesbeesseesbeeatees £esbeesseessensseans 6-9
DATA_SET_COLLECTION_NAME
CONSLITUENT COMPONENESeueieiiieiieeiie e siees ceteeeeseeseeseeseesseesae saeesseesseesseesseesseesseesses eesses 6-4
EXAIMPIE .t e et se e e teeneeeeeaeeaneeeeeaneaas 6-10
DATA_SET_ID
CONSLITUENT COMPONENESeeeeiiiieiieeiieeie et ceteesieseesseeseeseeseesae saeesseesseessessseessessreeases eesses 6-3
(012 6 ST 1 <SRRI 6-7
(0155 ox 1] o o o SRR 6-8
EXAIMPIE .t e ree e e nreebes feesbeenreenreenreeareenreeres 6-9
satellite and MiNG NAIMES TNooiiiiieieiie e et cesteesreesseesreesreesreesreens oane 6-6
standard acronyms and abbreviationsoceoeeiiiiiiis v e 6-5
SYIMEBX .ttt ettt ettt e e e e ete —eetee e e e be e e et e e e e hr e e e an feeahEeeeaanneeeaneeeaaReeea eeeeareresareeeaareeeaanees an 6-4
(LS 65 o g T o 1H 010 PSSR 6-9
DATA_SET_NAME
CONSLITUENT COMPONENESeuveiieieieeiieeieriees ceteeieeseesseeseeseesseesae saeesseesseessessseesseesreesses eesses 6-3
EXAIMPIE ..t e ree et e bes eesbeeareeraeenreenreenreenees 6-9
satellite and riNG NAIMES TNooiiiiieiieie e et cesreesreesreesreesreesreesseens oane 6-6
(00 T0il 109= 01 €= 11 o o SRR 6-2
Hél#
8 T=V s 1 < 0= = D RO RO PRSP 6-3
(01 0001 1 Vo =1 = TS T USSP RO PR PP 6-2
Hél#
INOEX THIES .. e ettt b e e eetesbease e e e anenneerenne e 6-3
Hél#
Processing level NUMDES ..o e e See data processing level
Hél#
SOFEWAIE FHIES ... e ettt eae besseeaeesresneenenrenns 6-3
H%I#
target
20 (01017 1 TP PP RPN 6-5
TARGET_NAME

200101770 0 1 S USROS 6-5

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

- v 1

VI SION MUY ..ot e e e e e e e e e e e e e eeeeeeeeeeeeeeees eeeaaaaaaaeeeeseeeeeeaeeeeees eeennsnnnnaaaaaaeens 6-9

Chapter 7. Date/Time Format 7-1

Chapter 7. Date/Time Format

PDS has adopted a subset of the International Standards Organization Standard (1SO/DIS) 8601
standard entitled “ Data Element and Interchange Formats - Representations of Dates and Times”,
and applies the standard across all disciplinesin order to give the system generality. See also
Dates and Timesin Object Description Language (Chapter 12, Section 12.3.2) of this document.

It isimportant to note that the ISO/DIS 8601 standard covers only ASCII representations of dates
and times.

7.1 Date/Times
In the PDS there are two recognized date/time formats:

CCYY-MM-DDTHH:MM:SS.sssZ (preferred format)
CCYY-DDDTHH:MM:SS.sssZ

Each format represents a concatenation of the conventional date and time expressions with the
two parts separated by the letter T:

CcC - century (00-99)

YY - year (00-99)

MM - month (01-12)

DD - day of month (01-31)

DDD - day of year (001-366)

T - date/time separator

HH - hour (00-23)

MM - minute (00-59)

SS - second (00-59)

Sss - fractions of second (000-999)

The time part of the expression represents time in Universal Time Coordinated (UTC) , hence the
Z at the end of the expression (see Section 7.3.1 for further discussion). Note that in both the
PDS catalog files and data product labelsthe “Z” is optional and is assumed.

PDS standard date/time format, i.e., the preferred date/time format, is: CCYY -MM-
DDTHH:MM:SS.sssZ.

Date/Time Precision
The above date/time formats may be truncated on the right to match the precision of the
date/time value in any of the following forms:

7-2 Chapter 7. Date/Time Format

1998

1998-12

1998-12-01
1998-12-01T723
1998-12-01T23:59
1998-12-01T23:59:58
1998-12-01T23:59:58.1

ODL Date/Time Information

Chapter 12, Object Description Language (ODL) Specification and Usage, Section 12.3.2, Dates
and Times, of this document provides additional information on the use of ODL in date/ti me
formation, representation, and implementation.

7.2 Dates
The PDS allows dates to be expressed in conventional and native (alternate) formats.

7.2.1 Conventional Dates

Conventional dates are represented in 1ISO/DIS 8601 format as either year (including century),
month, day-of-month (CCYY -MM-DD), or as year, day-of-year (CCYY-DDD). The hyphen
character (‘-*) isused as the field separator in this format. The former is the preferred format for
use in PDS labels and catalog files and is referred to as PDS standard date format, but either
format is acceptable.

7.2.2 Native Dates

Datesin any format other than the ISO/DIS 8601 format described above are considered to bein
aformat native to the specific data set, thus * native dates’. Native date formats are specified by
the data preparer in conjunction with the PDS data engineer. Mission -elapsed days and time-to-
encounter are both examples of native dates.

7.3 Times
The PDS allows times to be expressed in conventional and native (alternate) formats.

7.3.1 Conventional Times

Conventional times are represented as hours, minutes, and seconds using the full 1SO/DIS 8601
format: HH:MM:SS.sss. Note that the hours, minutes, and integral seconds fields must contain
two digits. The colon character (‘") isused as afield separator. The seconds field may include a
fractional part if appropriate; if so, aperiod is used as the decimal point (the European-style
comma may not be used). The fractional part may not exceed 3 digits (thousandths of a second).

The PDS has adopted the use of Universal Time Coordinated (UTC) for expressing time, using

Chapter 7. Date/Time Format 7-3

the format HH:MM:SS.sssZ. Note that in both the PDS catal og files and data product labels the
“Z" isoptional and is assumed. Fractions of seconds cannot exceed a precision of milliseconds.
Thisformat is hereafter referred to as PDS standard time format.

The START_TIME and STOP_TIME data el ements required in data product |abels and catalog
templates use the UTC format. For data collected by spacecraft-mounted instruments, the date/
time must be a time that corresponds to “spacecraft event time”. For data collected by
instruments not located on a spacecraft, this time shall be an earth -based event time value.

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of datafrom a particular spacecraft or ground-based facility with data from other
SOurces.

7.3.2 Native Times

Timesin any format other than the ISO/DIS 8601 format described above are considered to bein
aformat native to the data set, and thus “ nativetimes”. The NATIVE_START_TIME and
NATIVE_STOP_TIME elements hold the native time equivalents of the UTC valuesin
START_TIME and STOP_TIME, respectively.

Thereis one native time of particular interest, however, which has specific key words associated
with it. The spacecraft clock reading (that is, the “count”) often provides the essential timing
information for a space-based observation. Therefore, the elements
SPACECRAFT_CLOCK_START_COUNT and SPACECRAFT_CLOCK_STOP_COUNT are
required in labels describing space-based data. This value is formatted as a string to preserve
precision.

Note that in rare cases in which there is more than one native time relevant to an ob servation, the
data preparer should consult a PDS data engineer for assistance in selecting the appropriate PDS
el ements.

The following paragraphs describe typical examples of native time formats.

1. Spacecraft Clock Count (sclk) - Spacecraft clock count (sclk) provides a more precise
time representation than event time for instrument -generated data sets, and so may be
desirable as an additional timefield. In atypical instance, a range of spacecraft-clock-
count values (i.e., a start-and a stop-value) may be required.

Spacecraft clock count (SPACECRAFT_CLOCK_START_COUNTand
SPACECRAFT_CLOCK_STOP_COUNT) shall be represented as aright-justified
character string field with a maximum length of thirty characters. This format will
accommodate the extra decimal point appearing in these data for certain spacecraft and
other specia formats, while also supporting the need for simple comparison (e.g., “>" or
<") between clock count values.

Note that if the spacecraft clock values are not strictly numeric strings (for example, if

7-4

Chapter 7. Date/Time Format

they contain colon separators), care should be taken in dealing with blank padding and
justification of the string value. If necessary, non-numeric strings may be left-justified to
ensure that clock values will sort in the expected way.

Example
SPACECRAFT_CLOCK_START_COUNT = " 1234: 36. 401" correct
SPACECRAFT_CLOCK_START_COUNT = "1234: 36. 401 " incorrect

. Longitude of Sun - Longitude of Sun (“Ls") is aderived data value that can be

computed, for a given target, from UTC.

. Ephemeris Time - Ephemeristime (ET) is calculated as “TAI + 32.184 sec. + periodic

terms’. The NAIF Sand P kernels have data that arein ET, but the user (via NAIF
ephemeris readers which perform data conversion) can obtain the UTC values.

4. Relative Time - In addition to event times, certain “relativetime” fields will be needed to

represent data times or elapsed times. Time-from-closest-approach is an example of such
adata element. These times shall be presented in a (D, H,M,S) format as a floating point
number, and should include fractional seconds when necessary. The inclusion of “day” in
relative times is motivated by the possible multi-day length of some delta times, as could
occur, for example, in the case of the severa-month Galileo Jupiter orbit.

. Local Times - For agiven celestial body, LOCAL_TIME isthe hour relative to midnight

in units of 1/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC) - When times must be expressed according to

an alternate time zone, they shall consist of hours, minutes, seconds, and an offset, in the
form HH:MM:SS.sss+n, where n is the number of hours from UTC.

Chapter 7. Date/Time Format

aternate time zone, 7-5
date format
conventional, 7-2
native, 7-2
precision, 7-1
syntax, 7-1
Ephemeristime (ET), 7-4
local time, 7-4
LOCAL_TIME, 7-4
native time
examples, 7-3
relativetime, 7-4
sclk. See spacecraft clock count (sclk)
spacecraft clock count (sclk), 7-3
syntax, 7-4
SPACECRAFT_CLOCK_START_COUNT, 7-3, 7-4
SPACECRAFT_CLOCK_STOP _COUNT, 7-3, 7-4
START _TIME, 7-3
STOP_TIME, 7-3
time format
conventional, 7-2
native, 7-3
PDS standard time format, 7-3
precision, 7-1
syntax, 7-1
Universal Time Coordinated (UTC). See time format
date/time formats, use in
UTC, useof, 7-5
in labels and catalog files, 7-3

7-5

Chapter 8. Directory Types and Naming 8-1

Chapter 8. Directory Types and Naming

The Directory Naming standard defines the conventions for naming directories on a data volume.
This chapter lists the standard directories established by PDS, plus the rules for forming
subdirectory names and abbreviations.

8.1 Standard Directory Names

When any of the following directories are included on an archive product, the following standard
directory naming conventions are used.

Directory Contents

CATALOG PDS catalog files

DOCUMENT Documentation, supplementary and ancillary information to assist in
understanding and using the data products

EXTRAS “Vaue added” elements included by the data preparer, but outside the scope
of the PDS archive requirements

GAZETTER Tables of information about the geological features of atarget

INDEX Indicesto assist in locating data of interest
LABEL “Include’ files which describe specific aspects of the data format and
organization

SOFTWARE Utilities, application programs, or subprograms used to access or process the
data

The following standard directory names are recommended for use on archive volumes. Note that
these directory names are reserved for the uses described below. That is, if they appear on an
archive volume, they must contain the indicated information:

CALIB Calibration files used in the original processing of the data, or needed to use
the data

GEOMETRY Filesdescribing the observational geometry (e.g., SEDRs, SPICE kernel s)
BROWSE Reduced resolution versions of data products
DATA Contains one or more subdirectories of data products. The DATA

subdirectory is used to unclutter the root directory of a volume by providing a
single entry point to multiple data subdirectories.

8-2 Chapter 8. Directory Types and Naming

Note that some data sets may not contain all the components above and, as a result, do not need
all of the directories listed. For example, many image data sets do not include geometry files and
so do not need a GEOMETRY directory. See the VVolume Organization and Naming chapter of
this document for alist of required and optional subdirectories on any specific volume.

8.2 Formation of Directory Names

1. A directory name must consist of only uppercase a phanumeric characters and the
underscore character (i.e., A-Z, 0-9, or “_"). No lowercase letters (i.e., aZz) or special
characters (eg., “#, “&”, “*") are allowed.

2. A directory name must not exceed eight charactersin length, to comply with th e ISO
9660 level 1 mediainterchange standard.

3. Thefirst letter of a directory name must be an alphabetic character, unless the directory
name represents a year (e.g., 1984).

4. If numeric characters are used as part of the name (e.g., DIR1, DIR2, DIR3) the n umeric
part should be padded with leading zeros up to the maximum size of the numeric
(DIR0001, DIR0002, DIR3267).

5. Directories which contain arange of similarly named files must be assigned directory
names using the portion of the filename which encompasses al the filesin the directory,
with “X’s” used to indicate the range of values of actual filenamesin the directory.

For example, the PDS Uranus Imaging CD -ROM disk contains image files that have
filenames that correspond to SPACECRAFT_CLOCK_START_COUNT values. The
directory that contains the image files ranging from C2674702.IMG through
C2674959.IMG has the directory name C2674XXX.

6. Directory names must use full length terms whenever possible (e.g., SATURN,
MAGELLAN, CRUISE, NORTH, DATA, SOFTWARE). Otherwise, directory names
must be constructed from abbreviations of full-length names using the underscore
character to separate abbreviated terms, if possible. The meaning of the directory name
should be clear from the abbreviation and from the directory structure.

Chapter 8. Directory Types and Naming 8-3

For example, the following directory structure can be found on the VVoyager 2 Images of
Uranus CD-ROM Volume 1:

ROOT —— ARIEL
—— DOCUMENT
—— INDEX
—— OBERON
— TITANIA
— UMBRIEL
—— UNKNOWN
—— URANUS —

C2674XXX
C2675XXX

——— U _RINGS—

— 6.2687XXX
—— C2674XXX

In this case, it is clear from the context that the directory U_RINGS is the abbreviated
form of URANUS RINGS.

7. Highleve directories that deal with data sets covering a range of planetary science
disciplines or targets shall adhere to the following hierarchy:

A Planetary science directory: PLANET
Planetary body subdirectories: MERCURY, MOON, MARS, VENUS, COMET
Discipline subdirectories: ATMOS, IONOSPHE, MAGNETOS, RING,

SURFACE, and SATELLIT
(Use satellite name if numerous files exist)

8. Therecommended SOFTWARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. Either a platform-based
model or an application-based mode can be used in defining software subdirectories. In
a platform-based model, the hardware platform, operating system and environment must
be explicitly stated. If there is more than one operating system/environment supported
they are addressed as subdirectories under the hardware directories. When thereis only
one, the subdirectory may be promoted to the hardware directory.

For example, if software for the PC for both DOS and Windows were present on the
volume, the directories SOFTWARE/PC/DOS and SOFTWARE/PC/WIN would exist. If
only DOS software were present, the directory would be SOFTWARE/PCDOS.

8-4 Chapter 8. Directory Types and Naming

8.3 Path Formation Standard

The PDS standard for path names is based on Level 1 of the 1ISO 9660 international standard. A
pathname may consist of up to eight directory levels. Each directory name is limited to eight
characters; the forward-slash character (“/”) is used as the separator in path names. Path names
typically appear on PDS volumes as data in index tables for locating specific files on an archive
volume. They may also appear as values in alimited number of keywords (e.g.,
FILE_SPECIFICATION_NAME, PATH_NAME, and LOGICAL_VOLUME_PATH_NAME).

The following are examples of valid values for the keywords listed above:

TGI5NXXX/TGI5NIXX/TG15N12X identifies the location of the directory TG15N12X
at the third level below thetop level of an archive
volume.

DOCUMENT identifiesa DOCUMENT directory within the root
directory.

Note: Theleading slash is omitted because these are relative paths. Thetrailing lashis
included so that concatenation of PATH_NAME and FILE_NAME will yield the full file
specification. See the File Specification and Naming chapter of this document for more
information.

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS
support for this format continues to exist, it is recommended that all future volumes use the
UNIX syntax instead.

8.4 TapeVolumes

When magnetic tape is the archive medium, a disk directory structure cannot be used because the
medium does not support multi -level directories. In this case, files must be stored sequentially.

A directory structure for the volume must be designed in any case, so that when the data are
transferred to a medium that supports hierarchical file management they can be placed into an
appropriate directory structure. A DIRECTORY object must be included with each tape volume
within the VOLUME object. This object is then used to describe how the sequential files should
be loaded into a hierarchical structure.

8.5 Exceptionsto These Standards

In certain cases, the archive medium used to store the data, the hardware used to produce the data
set, or the software operating on the data may impose restrictions on directory names and
organization. In these cases, consult a PDS data engineer for guidance in designing the archive
volume structure.

Chapter 8. Directory Types and Naming

directories
path names, 8-4
reserved names, 8-1
standard directories, 8-1
DIRECTORY, 8-4
directory names
and 1SO 9660, 8-2
syntax, 8-2
directory naming, 8-1
directory paths
and 1SO 9660, 8-4
syntax, 8-4
directory structure
example, 8-3
on sequential media, 8-4
tape volumes, 8-4
VOLUME, 8-4

Chapter 9. Documents 9-1

Chapter 9. Documents

Supplementary or ancillary reference materials are usually included with archive products to
improve their short- and long-term utility. These documents augment the internal documentation
of the product |abels and provide further assistance in understanding the data products and
accompanying materials. Typical archive documents include:

?? Flight project documents

?? Instrument papers

?? Science articles

?? Volume information

?? Software Interface Specifications (SISs)
?? Software user manuals

The PDS criteria for inclusion of a document in the archive are:

1. Would thisinformation be helpful to a data user?
2. Isthe material necessary?
3. Isthe documentation complete?

In general, the PDS seeks to err on the side of compl eteness.

Each document to be archived must be prepared and saved in a PDS-compliant format, including
aPDS label. Documents are delivered in the DOCUMENT directory of an archive volume (see
the Volume Organization and Naming chapter of this document).

A flat, human-readable ASCII text version of each document must be included on the volume,
although additional versions may be included in other supported formats at the option of the data
producer. “Flat ASCII text” means the file may contain only the standard, 7 -bit printable ASCII
character set, plus the blank character and the carriage -return and linefeed characters as record
delimiters. A fileis“human-readable” if it is not encoded and if any special markup tags which
may be included do not significantly interfere with an average user’s ability to read the file. So,
for example, ssimple HTML filesand TeX/LaTeX files with relatively little markup embedded in
the text are generally considered human -readable and may, therefore, be used to satisfy the above
ASCII text version requirement.

Note that the PDS takes the requirement for complete documentation very seriously. Documents
that are essential to the understanding of an archive are considered as important as the data files
themselves. Furthermore, including a document in a PDS archive constitutes publication (or re -
publication) of that document. Consequently, documents prepared for inclusion in an archive are
expected to meet not only the PDS label and format requirements, but also the structural,
grammatical and lexical requirements of arefereed journal submission. Documents submitted for
archiving which contain spelling errors, poor grammar or illogical organization will be rejected
and may ultimately lead to the rgjection of the submitted data for lack of adequate
documentation.

9-2 Chapter 9. Documents

9.1 PDSObjectsfor Documents

PDS labels of documentation files use either the TEXT or DOCUMENT object, as appropriate.
The DOCUMENT object is usually used with documentation files found in the DOCUMENT
directory of an archive volume. Files described by aDOCUMENT object may be in any of the
formats described in Section 9.2.

The TEXT object may only be used with ASCII text files containing no markup. TEXT objects
are most often used for small text files occurring anywhere in the archive volume (for example,
the AAREADME.TXT filein theroot directory or the DOCINFO.TXT fileinthe DOCUMENT
directory).

9.1.1 TEXT Objects

TEXT objectsare preferred for stand-alone documents with a narrow focus. For example, the
AAREADME.TXT or DOCINFO.TXT files on the archive volume are usually labeled using a
TEXT object. Files described by a TEXT object must:

a) Beplain, flat ASCII files without markup tags (i.e., no HTML or TeX files), encoded
graphics (as in PostScript files), or programmatic structures (i.e., no source code files or
scripting commands); and

b) Haveafile extension of “.TXT”

9.1.2 DOCUMENT Objects

DOCUMENT objectsare preferred when several versions of the same file are provided or when
there are several component files constituting a single version of the document - for example,
when graphics are included in separate files from the text. Any file labeled using a
DOCUMENT object must:

a) Bein one of the PDS-approved formats listed below; and

b) Usethe appropriate object characteristics (listed below) for the DOCUMENT object
parameters and the file extension.

DOCUMENT labels are most often combined detached |abels, since attaching them to most of
the formats listed below would make the combined file unusable in its customary environment
(Microsoft Word, for example, cannot recognize “.DOC” files with attached PDS labels).

Chapter 9. Documents

9-3

Format Object I nterchange Document For mat File Extension
Format
Plain ASCIl Text | ASCII_DOCUMENT ASCII TEXT ASC
HTML HTML_DOCUMENT |ASCII HTML HTM or HTML*
TeX TEX_DOCUMENT ASCII TEX TEX
LaTeX LATEX_DOCUMENT |ASCII LATEX TEX
Adobe PDF PDF_DOCUMENT BINARY ADOBE PDF .PDF
MSWord WORD_DOCUMENT |BINARY MICROSOFT WORD .DOC
Rich Text RTF_DOCUMENT BINARY RICH TEXT .RTF
GIF GIF_DOCUMENT BINARY GIF .GIF
JPG JPG_DOCUMENT BINARY JPG JPG
Encapsulated EPS DOCUMENT BINARY ENCAPSULATED .EPS
Postscript POSTSCRIPT
PNG PNG_DOCUMENT BINARY PNG PNG
Postscript PS DOCUMENT BINARY POSTSCRIPT .PS
Tagged Image TIFF_DOCUMENT BINARY TIFF TIFor .TIFF
File Format

* See chapter File Specification and Naming regarding extensions with more than three
characters.

Example: “MYDOC” is adocumentation file to be included in the DOCUMENT directory of an
archive volume. Two versions will be supplied: aflat ASCII version with the graphicsin
separate TIFF files; and a Microsoft Word version with in-line graphicsin asinglefile. In the
PDS label, “MYDOC” will be described using a DOCUMENT object for each different file
format provided. The filesincluded in the directory will be:

grODNE

MYDOC.ASC
MYDOC.DOC
MY DOCO01.TIF
MY DOCO002.TIF
MYDOC.LBL

required ASCII version
optional Microsoft Word version to retain all graphics
optional scanned TIFF version of selected pages

optional scanned TIFF version of other selected pages
PDS label defining DOCUMENT object(s) for thesefiles

Optional versions of the document should have the same file name as the required ASCI | version
but with different extensions. Optional versions should be defined as additional DOCUMENT
objects in the single PDS label; the name of the required ASCII file should be indicated in the

text of the DESCRIPTION keyword.

9.2

9.2.1 Flat ASCII Text

Line Length and Delimiters - PDS recommends plain text files have line length restricted to 78
characters or fewer, to accommodate printing and display on standard devices. Each line must be
terminated by the two-character carriage-return/linefeed sequence (ASCII decimal character

codes 13 and 10, respectively).

Document Format Details

9-4 Chapter 9. Documents

Page L ength and Breaks - Block paragraph style is preferred, with paragraphs being separated
by at least one blank line. The form feed character (ASCII decimal code 12) may be used to
indicate page breaks, in which case pages should contain no more than 60 lines of text. A
formfeed character should be inserted immediately after the END statement line of an attached
PDS label in thesefiles.

9.2.2 ASCII Text Containing M arkup Language

Line Length and Delimiters - The 78-character line length recommendation is dropped for
these files. Notwithstanding, the lines must be delimited by the carriage return/linefeed character
combination.

Page L ength and Breaks - Page breaks are controlled by the markup in thesefiles.
Consequently, there are no specific page length recommendations.

Note: ASCII files containing extensive markup may not pass the “human -readable’ test. Also,
some automatic converters producing, for example, HTML files that might be expected to
be human-readable in fact add so many additional marks and notations that those files
also fail the * human-readable’ test. Consult a PDS data engineer for help in determining
whether a particular file can be considered “ human -readable’ for archive purposes.

9.22.1 Hyper-Text Markup Language (HTML) Files

PDS archive products must adhere to Version 3.2 of the HTML language, a standard generalized
markup language (SGML) conforming to the SO 8879 standard. All files are subject to
validation against the HTML 3.2 SGML Declaration and the HTML Document Type Definition.

Note: Constructs not defined inthe HTML 3.2 standard (e.g., FRAME, STYLE, SCRIPT, and
FONT FACE tags) are not allowed in PDS documentation files.

9.2.2.2 Location of Files

PDS strongly recommends that targets of all HTML links be present on the archive volume. In
cases where external links are provided, the link should lead to supplementary information that is
not essential to understanding or use of the archival data.

PDS recommends that all files comprisingan HTML document or series of documents be |located
inasingle directory. However, locating ancillary files (e.g., images, common files) in
subdirectories may be required under certain circumstances (e.g., to avoid conflicts in file names
or to minimize replication of common files).

9.2.2.3 Discouraged HTML 3.2 Capabilities
Although the APPLET tag is advertised to be supported by all Java enabled browsers, not all

Chapter 9. Documents 9-5

applets execute on all browsers on all platforms. Further, some browsers require that the user
explicitly enable use of Java applets before the applet will execute. Consequently, applets are
permitted in PDS document files only when the information they convey is not essential to
understanding or use of the archival data.

Use of the TAB character is permitted but strongly discouraged because of variationsin
implementation among browsers and resulting misalignments within documents.

Use of animated GIF image filesis discouraged.

9.2.3 Non-ASCII| Formats

Wherever possible the specific encoding and version level information should be included in the
label for al non-ASCII documents. The ENCODING_TY PE keyword is used to indicate the
base encoding type (e.g., PostScript, GIF, etc.), while the specific version information should be
included in the text of the DESCRIPTION keyword. Seethe PSDD for alist of standard
encoding types. Additional types may be added at the discretion of the PDS data engineer.

9.2.4 Validation

Documentation files prepared to accompany a data set or data set collection must be validated.
Validation consists of checking to ensure that the files can be copied or transmitted
electronically, and can be read or printed by their target text -processing program.
Documentation files should be spell-checked prior to being submitted to PDS for validation.

9.3 Examples

9.3.1 Simple Example of Attached label (Plain ASCII Text)

The following label could be attached to a plain ASCII text file describing the content and format
of Mars Pathfinder Imager Experiment Data Records.

PDS_VERSI ON_I D = PDS3

RECORD_TYPE = STREAM

OBJECT = TEXT

NOTE = "Mars Pat hfinder |nager Experinent Data Record SIS
PUBLI CATI ON_DATE = 1998- 06- 30

END_OBJECT = TEXT

END

9.3.2 Complex Example of Detached L abel (Two Document Versions)

If the data producer chose to provide the same document in both plain ASCII text and as a
Microsoft Word document, the detached label would have the name EDRSIS.LBL and would be
asfollows:

9-6

PDS_VERSI ON_| D
RECORD TYPE
AASCI | _ DOCUMENT
AWORD_DOCUNENT

OBJECT
DOCUVENT_NAVE
PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
| NTERCHANGE_FORVAT
DOCUVENT _FORVAT
DESCRI PTI ON

END_CBJECT

OBJECT
DOCUVENT_NAVE
PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
| NTERCHANGE _FORVAT
DOCUVENT _FORVAT
DESCRI PTI ON

END_CBJECT
END

Chapter 9. Documents

PDS3

UNDEFI NED
"EDRSI S. ASC"
"EDRSI S. DOC!

ASCI | _ DOCUVENT
"Mars Pat hfi nder
1998- 06- 30

" DATA PRODUCT SI S

ASCI |

TEXT

"This docunent contains a textual
the VICAR and PDS fornmatted Mars Pat hfi nder
Experi ment Data Records. This is the ASC I
version of the docunent required by PDS."
ASCI | _ DOCUMENT

| mmger Experinment Data Record"

descri ption of
| MP
t ext

WORD DOCUNENT
"Mars Pat hfi nder
1998- 06- 30

" DATA PRODUCT SI S

Bl NARY

"M CRCSOFT WORD!

"Thi s docunment contains a textual
the VICAR and PDS fornmatted Mars Pat hfi nder
Experi ment Data Records. The docunent was
created using Mcrosoft Wrd 6.0.1 for the
Maci nt osh. "

WORD DOCUNENT

| mmger Experinment Data Record"

description of
| MP

9.3.3 Complex Example of Detached L abel (Documents Plus Graphics)

The following label (EDRSIS.LBL) illustrates the use of an HTML document as the required
ASCII document. The same document is also included as a PDF file, and four PNG images are
included separately.

PDS_VERSI ON_| D
RECORD_TYPE
AHTM._ DOCUMENT
APDF_DOCUMENT
APNG_DOCUMENT

CBJECT
DOCUMENT_NAME

PUBLI CATI ON_DATE

DOCUMENT_TCPI C_TYPE
| NTERCHANGE_FORVAT

DOCUMENT_FORNVAT
DESCRI PTI ON

PDS3

UNDEFI NED

"EDRSI S. HTM'

" EDRSI S. PDF"

("FIGL. PNG', "FI Q. PNG', "TAB1. PNG', "TAB2. PNG')

HTM._ DOCUNMENT
"Mars Pat hfi nder
Recor d"

1998- 06- 30
"DATA PRCODUCT SI S'

ASCl |

HTML

"Thi s docunent contains a description
of the VICAR and PDS formatted Mars

Pat hfi nder | MP Experinent Data Records.
is an HTML version of the docunent.”

| mmger Experinment Data

Thi s

Chapter 9. Documents 9-7

END_OBJECT = HTM__DOCUNMENT
OBJECT = PDF_DOCUMENT
DOCUMENT_NANME = "Mars Pat hfinder |nager Experinent Data
Record"
PUBLI CATI ON_DATE 1998- 06- 30

DOCUVENT _TCPI C_TYPE
ENCODI NG_TYPE

| NTERCHANGE _FORVAT
DOCUVENT_FORVAT
DESCRI PTI ON

END_CBJECT

CBJECT

DOCUMENT_NAME

PUBLI CATI ON_DATE
DOCUVENT_TCPI C_TYPE
FI LES

ENCODI NG_TYPE

| NTERCHANGE _FORVAT
DOCUVENT_FORVAT
DESCRI PTI ON

END_CBJECT

END

" DATA PRODUCT SI S'

" PDS- ADOBE- 1. 1"

Bl NARY

" ADCBE PDF"

"Thi s docunent contains a description
of the VICAR and PDS formatted Mars
Pat hfi nder | MP Experinent Data Records.
is a PDF version of the docunent.™
PDF_DOCUMENT

Thi s

PNG_DOCUMENT
"Mars Pat hfi nder
Record"

1998- 06- 30

" DATA PRODUCT SI S'

4

" PNGL. 0"

Bl NARY

PNG

"This docunment is a PNG representation of two
figures and two tables fromthe Mars

Pat hfi nder | MP Experinent Data Record SIS "
PNG_DOCUMENT

| mmger Experinment Data

9-8 Chapter 9. Documents

AAREADME.TXT, 9-2
ASCII files
containing markup, 9-4
format, 9-3
DOCINFO.TXT, 9-2
DOCUMENT, 9-2
DOCUMENT objects 9-2
documentation, 9-1
ASCII file format, 9-3
criteriafor inclusion, 9-1
example
attached TEXT, 9-5
detached, 9-5
with graphics, 9-6
format, 9-1
HTML, 9-1, 9-4
labelsfor, 9-2
markup files, 9-4
non-ASClI| files, 9-5
required ASCII format, 9-1
TeX/LaTeX, 9-1
validation, 9-5
ENCODING_TYPE, 9-5
extensions
table of, 9-3
TEXT, 9-2
TEXT objects 9-2

Chapter 10. File Specification and Naming 101

Chapter 10. File Specification and Naming

The File Specification and Naming standard defines the PDS conventions for forming file
specifications and names. This chapter is based on levels 1 and 2 of the international standard
SO 9660, “Information Processing - Volume and File Structure of CD-ROM for Information
Interchange.”

| SO 9660 Level 1 versus|SO 9660 Level 2

PDS recommends that archive products adhere to the SO 9660 Level 1 specification.
Specifically, CD-ROM volumes that are expected to be widely distributed should usefile
identifiers consisting of a maximum of eight characters in the base name and three charactersin
the extension (i.e,, “8.3" file names).

When there are compelling reasons to relax the 8.3 file name standard, the IS O 9660 Level 2

specification with respect to file names only may be used, subject to the restrictions listed in
Section 10.1.2.

10.1 File Specification Standards

A file specification consists of the following elements:
1. A complete directory path name (as discussed in the Directory Types and Naming chapter
of this document)
2. A file name (including extension)
The PDS has adopted the UNIX/POSIX forward slash character (/) as the directory separator for
usein path names. Dir ectory path name formation is discussed further in the Directory Types
and Naming chapter of this document.

The following is an example of a simple file specification. The file specification identifies the
location of thefilerelative to the root of avolume, including the directory path name.

File Name: TG15N122.IMG
File Specification: TGI5NXXX/TGI5N1IXX/TG15N12X/TG15N122.IMG
Do not use path or file names that correspond to operating system specific hames, such as:

AUX COM1 CON LPT1 NUL PRN

10-2 Chapter 10. File Specification and Naming

10.1.1 1SO 9660 Level 1 Specification

A file name consists of a base name and an extension, separated by afull stop character (“.”).
Under 1SO 9660 Level 1, the length of the base name may not exceed eight characters and the
extension may not exceed three characters. In addition, a version number consisting of a
semicolon and an integer must follow the file identifier. The base name and extension may only
contain characters from the following set: the upper case al phanumeric characters (A - Z, 0-9)
and the underscore (*_"). Collectively, these requirements are often referred to asthe“8.3” (“8
dot 3") file naming convention. These limitations exist primarily to accommodate older
computer systems that cannot handle longer file names. Since PDS archive volumes are designed
to be read on many platforms, including PCs, these restr ictions are necessary.

Preferred format: BASENAME (1..8 characters) "." EXTENSION (3 characters)
Allowable format: BASENAME (1..8 characters) "." EXTENSION (1..3 characters)

Actual format
on archive medium: BASENAME (1..8 characters) "." EXTENSION (1..3 characters) ;1"

10.1.2 1SO 9660 L evel 2 Specification

The PDS use of 1SO 9660 Level 2 file names adheresto all the above restrictions, with one
exception: the base name may be up to 27 characters long (total file name length not to exceed
31 characters). Thus, this format is sometimes referred to asthe “27.3” format.

Note: In rare cases the following variations are allowed on the 27.3 format file name:

?? Thefile name portion may be up to 29 characterslong; or
?? The extension may be up to 29 characters long.

In no case, however, may the total file name length, including the “.”, exceed 31 characters.
Preferred format: BASENAME (1..27 characters) "." EXTENSION (3 characters)
Allowable format: BASENAME (1..29 characters) "." EXTENSION (1..29 characters)

Actual format
on archive medium: BASENAME (1..29 characters) "." EXTENSION (1..29 characters) ";1"

Note that only the file name specification for Level 2 may be used in PDS archive volumes. All
other Level 2 extensions are prohibited.

Chapter 10. File Specification and Naming 10-3

10.2 Reserved Directory Names, File Names and Extensions

A number of file names, directory names and file extensions are reserved for files that are
required in PDS ar chive volumes under various circumstances. These reserved names and
extensions are listed in the following sections for easy reference. For details concerning what
directories and files are required where and when, see the indicated chapter.

10.2.1 Reserved Directory Names

The following directory names are reserved. The contents of these directories are described in
Chapter 19, Volume Organization and Naming.

BROWSE
CALIB
CATALOG
DATA
DOCUMENT
EXTRAS
GAZETTER
GEOMETRY
INDEX
LABEL
SOFTWARE

10.2.2 Reserved File Names

The following file names are reserved. Not all of them are required in all cases. For a complete
description of what files are required where and when, see Chapter 19, Volume Organization and
Naming.

AAREADME.TXT GAZINFO.TXT PERSON.CAT
BROWINFO.TXT GEOMINFO.TXT REF.CAT
CALINFO.TXT INDEX.TAB SGIINFO.TXT
CATALOG.CAT INDXINFO.TXT SOFTINFO.TXT
CATINFO.TXT INST.CAT SUNINFO.TXT
CUMINDEX.TAB INSTHOST.CAT VOLDESC.CAT
DATASET.CAT LABINFO.TXT VOLDESC.SFD
DOCINFO.TXT MACINFO.TXT VOLINFO.TXT
ERRATA.TXT MISSION.CAT ZIPINFO.TXT
EXTRINFO.TXT PCINFO.TXT

10.2.3 Reserved Extensions

The following file extensions are reserved. A brief description is provided in the table below.
Additional detail is contained in Chapter 19, Volume Organization and Naming, and Chapter 9,
Documentation Standard.

104 Chapter 10. File Specification and Naming

Extension Description
(use with files of this type)

ASC Plain ASCII documentation files

BC SPICE Binary format CK (pointing) files

BSP SPICE Binary format SPK (ephemeris) files
CAT Catal og object(s)
DAT Binary files (other than images)

DLL Dynamic Link Library
DOC Microsoft Word document

EPS Encapsulated Postscript

EXE Application or Executable
FMT Include file for describing data object (meta data)
GIF GIF image

HTM or HTML [HTML document

IBG Browse image data

IMG Image data

IMQ Image data that have been compressed

JPG JPEG image

LBL Detached label for describing data object

LIB Library of object files
MAK Makefile for compiling / linking application or executable
OBJ Object file

PDF Adobe PDF document

PNG Portable Network Graphics

PS Postscript

QUB Spectral (or other) image QUBEsS

RTF Rich Text document

TAB Tabular data, including ASCIl TABLE abjects with

detached labels
TEX TeX or LaTeX document
TI SPICE Text IK (instrument parameters) files
TIF or TIFF | Tagged Image File Format documents

TLS SPICE Leap seconds kernel files

TPC SPICE Physical and cartographic constants kernel files
TSC SPICE Spacecraft clock coefficients kernel files
TXT Plain text documentation files

XC SPICE Transfer format CK (pointing) files

XES SPICE E-kernel files

XSP SPICE Transfer format SPK (ephemeris) files

ZIP Zip-compressed files within PDS

Table 10.1 — Reserved File Extensions

Chapter 10. File Specification and Naming 10-5

10.3 Guideinesfor Naming Sequential Files
In cases where file names are constructed from atime tag or sequential data object identifier, the
following forms are suggested (but not required):

Pnnnnnnn.EXT

where “.EXT” isthefile extension (see above) and P is a character indicating:

nnnnnnn is a clock count value (e.g., “C3345678.IMG”)

nnnnnnn isatime value (e.g., “T870315.TAB”)

nnnnnnn isaframe ID or animage ID (e.g., “F242A03.IMG”)
nnnnnnn is a numeric file identification number (e.g., “NO03.TAB”)

ZT—=0

10-6

directories
reserved names, 10-3
file extensions
reserved extensions, 10-3
file names, 10-1
27.3 convention, 10-2
8.3 convention, 10-2
SO 9660 Level 1, 10-2
SO 9660 Level 2, 10-2
reserved extensions, 10-3
reserved names, 10-3
sequential file names, 10-5
syntax, 10-2
file specification
definition, 10-1
example, 10-1
SO 9660
Leve 1 file names, 10-2
Leve 2 file names, 10-2

Chapter 10. File Specification and Naming

Chapter 11. Media Formats for Data Submission and Archive 11-1

Chapter 11. MediaFormats for Data
Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its science nodes. The PDS expects flight projects to deliver all archive products on
magnetic or optical media. Electronic delivery of modest volumes of special science data
products may be negotiated with the science nodes.

Archive Planning - During archive planning, the data producer and PDS will determine the
medium (or media) to use for data submission and archiving. This standard lists the media that
are most commonly used for submitting data to and subsequently archiving data with the PDS.
Delivery of data on media other than those listed here may be negotiated with the PDS on a case -
by-case basis.

Physical M ediafor Archive - For archival products only media that conform to the appropriate
International Standards Organization (1SO) standard for physical and logical recording formats
may be used.

1. The preferred data delivery medium is the Compact Disk (CD -ROM or CD-Recordable)
produced in 1SO 9660 format, using Interchange L evel 1, subject to the restrictions listed
in Section 10.1.1.

2. Compact Disks may be produced in 1SO 9660 format using Interchange Level 2, subject
to the restrictions listed in Section 10.1.2.

3. Digita Versatile Disk (DVD-ROM or DVD-R) should be produced in UDF-Bridge
format (Universal Disc Format) with I1SO 9660 Level 1 or Level 2 compatibility.

Because of hardware compatibility and long-term stability issues, the use of 12-inch Write Once
Read Many (WORM) disk, 8-mm Exabyte tape, 4-mm DAT tape, Bernoulli Disks, Zip disks,
Syquest disksand Jaz disks is not recommended for archival use. WORM disk formats are
proprietary to the specific vender hardware. Helical scan tape (8-mm or 4-mm) is prone to
catastrophic read errors. Bernoulli, Zip, Jaz, Syquest and other vendor -specific storage media
are prone to obsol escence.

11.1 CD-ROM Recommendations

11.1.1 Useof Variant Formats

The use of Extended Attribute Records (XARS), Rock Ridge Extensions or Macintosh Hybrid
Disk Extensions on archival CD-ROMs is discouraged because these extensions can cause errors
with CD-ROM drivers on some systems.

11-2 Chapter 11. Media Formats for Data Submission and Archive

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMSs be premastered using a single-session, single-track format.
Other formats have been found to be incompatible with some readers.

11.2 DVD Recommendations

11.2.1 Useof Variant Formats

The official volume structure for DVD mediais UDF. DV D volumes should not be produced
using SO 9660 only. While current operating systems support SO 9660 on DVD volumes, there
IS no guarantee that future operating system upgrades, set-top boxes or other new devices will
continue to support 1SO 9660 formatted DVD volumes.

11.2.2 Premastering Recommendation

PDS recommends that DVD-ROMSs or DV D-Rs be premastered using a single-session, single-
track format using the UDF-Bridge format.

11.2.3 Recommended DVD Formats
There are currently three "variants' of DVD media:

?? DVD-5 -singlesided, single layer (4.7 GB)
?? DVD-9 - single sided, double layer (8.5 GB)
?? DVD-10 - double sided, single layer (9.4 GB)

Currently, only the DVD-5 is approved by the PDS for archiving data. A waiver may be
obtained for using the DVD-9 format if the archive consists of very large quantities of data (e.g.,
cost considerations may warrant using this format). The DVD-10 format is not recommended.

11.3 Packaging SoftwareFileson a CD or DVD

The 1SO 9660 Level 1 standard requires all pathnames and directory names to be in uppercase,
and to be limited to eight characters with a three -character file extension for file names. In some
cases it may be desirable to include software packages on an 1SO 9660 Level 1 archive product
that do not conform to these naming standards. The recommended method for packaging
softwareisto usea“Zip” utility in accordance with the PDS standards for archiving data using
Zip compression. See the Zip Compression chapter for more information.

11.4 Software Packaging Under Previous Versions of the Standard

Under previous versions of the Standards — prior to the adoption of the Zip standard (see the Zip
Compression chapter) — archive products that included software specifically intended for the

Chapter 11. Media Formats for Data Submission and Archive 11-3

Mac and SUN operating systems used the following conventions:
1. Mac Software

In thi s case the Mac files must be prepared in a particular format, as other platforms do
not recognize the resource and data fork files that come with Mac applications. (For an
example of properly formatted Mac software, see the NIHIMAGE software on the
Magellan GxDR and Clementine EDR CD -ROMs.) The Mac utility “STUFFIT” is used
to prepare the files by compressing them and encoding them using the BINHEX utility .
Users will also need this STUFFIT utility in order to unpack the software for use. The
procedure and software requirements should be described in atext file included on the
CD-ROM (in the appropriate SOFTWARE/DOCUMENT subdirectory — see the Volume
Organization and Naming chapter in this document).

Example— Text Documenting HQX Files

Maci nt osh Sof t war e

This directory contains software that can be used to display the GXDR
i mages on a Macintosh Il conmputer with an 8-bit color display.

NOTE: Because of the way this CD-ROM was produced, it was not possible
to record this display programas a Macintosh executable file. Anyone
who is unfanmiliar with the Maci ntosh STUFFIT utility should contact the
PDS operator, 818-306-6026, SPAN address JPLPDS: : PDS_OPERATOR, | NTERNET
addr ess PDS_COPERATCR@PLPDS. JPL. NASA. GOV

The file I MAGE. HQX contains the NIH I nage program along wth several
ancillary files and docunentation in Mcrosoft WORD format. It was
witten by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD- ROM di sks.

The |1 nage executabl e and manual are stored in BINHEX format, and the
utility STUFFIT or UNSTUFFIT nust be used to: 1) decode the BI NHEX
file IMAGE. HQX into | MAGE. SIT, using the ' DECODE BINHEX FILE..."' option
in the Gher menu; and 2) use 'OPEN ARCHI VE' fromthe File nmenu to
extract Inage 1.40 fromthe STUFFIT archive file. There are also
several other files in the archive file which should be unstuffed and
kept together in the same folder as the Inage executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

Raynond Lau MacNET: RayLau Usenet : rayl au@asysl1. UUCP
100-04 70 Ave. GEni e: RayLau

Forest Hills, NY. 11375-5133 Cl S: 76174, 2617

United States of Anerica. Del phi : RaynondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

Al addi n Systens, Inc.
Deer Park Center

Suite 23A-171

Apt os, CA 95003

United States of Anerica

11-4 Chapter 11. Media Formats for Data Submission and Archive

2. SUN Software

The problem in this caseis preserving the SUN file names, since caseis significant in file
names on that platform. Since the |SO standard requires all file and directory names to be
uppercase, adisk premastered as an 1ISO CD may encounter problems in the case-
sensitive SUN environment. Specifically, some CD readers mounted on SUN systems
show file names as uppercase regardless of the format prior to mastering. If build routines
(* make’ files, for example) refer to lowercase file names, the corresponding files will not
be found.

A method for dealing with this situation is to store the entire original directory structure
and contents in a compressed, encoded archive (a compressed “tar” file, for example),
and document the procedures and utilities needed to restore the files in the ap propriate
file. Thisis equivalent to the STUFFIT approach described above for Mac software.

Chapter 11. Media Formats for Data Submission and Archiv e 11-5

B I

Bernoulli Disks

(01 RV Y £11= o U o o PP TRRURR 11-1
BINHEX ULHTTITYeveitieiesesieieresies ettt ceeseessessessesseessessesssesss seessessessesnsessens 11-3
Hél#

CD-Recordable
(01 TRV Y 111= o U o o PPN TRR 11-1
CD-ROM
(01 TRV Y 111= o U o o PP TRTRR 11-1
formatting reCOMMENELIONScoeiiiiiieiieiient crtieree et see saeesseesseesseesreesreesreans 11-2
(ST 007 = 41 o RPN 11-2
%
DAT tape
(01 TRV Y £11= o U o PP TRRURR 11-1
data delivery
07 [SRS A1-1
0ata SUDIMISSION.......eeiiiiiiiieeie s teeie ettt et tes —eesteeteaseateeteetesteen £eteenseensesseenees 11-1
(01 RV Y 111= o - LTSS 11-1
DVD media
(o 0 AV o0 7= SRR 11-2
DVD-R
(01 RV Y £11= o U o o PP TRRTRR 11-1
DVD-ROM
(01 TRV Y £11= o U o o PP TRTRR 11-1
formatting reCOMMENELIONS.........ccuiiieiie et cerieree et see saeesseesseesseesseesreesreans 11-2
(ST 007 = €1 o PSP 11-2
UD .ttt eete et et et e st et et e e feesteateereeeeate e e teateane tesbeeseeeenteeeetenrenreane ee 11-2
%
Exabyte tape
(01 TRV Y £11= o U o o PP RTRR 11-1
Extended Attribute Records (XARS)
ON AEIIVENY TISKS ... et eeeeeete st e s tesneesateentes £eensessesnsens 11-2
Hél#
Jaz disks

(01 TRV Y £11= o U o o PP TRRURR 11-1

11-2 Chapter 11. Media Formats for Data Submission and Archive

Y -

PhySICal MEAIATOMMELSoceiiiiiiiiiie s e e —esreese e e e st e seesreesree s 2eseeenes 11-1
Hél#
software
PACKAGING TOF AEIIVEIY ..o s eeee et e e st eneeene saeeenes 11-3
STURFIT ULHTITY 1ottt ettt seens steeseessesseeseessesseessessens ssessesseensessenses 11-3
Syquest disks
(01 TRV Y £11= o U o o PP TRRTRR 11-1
%
L= U (] 1 YRR 11-4
%
WORM disk
(01 RV Y £11= o U o o PP TRRURR 11-1
ll%l#
Zip disks

(01 TRV Y £11= o U g o PP TRRTRR 11-1

Chapter 12. Object Description Language Specification and Usage 12-1

Chapter 12. Object Description Language
Specification and Usage

The following provides a complete specification for Object Description Language (ODL), the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains aformal definition of the grammar semantics of the language.
PDS specific implementation notes and standards are referenced in separate sections.

12.1 About the ODL Specification

This standard describes Version 2.1 of ODL. Version 2.1 of ODL supersedes Versions 0 and 1 of
the language, which were used previously by the PDS and other groups. For the most part, ODL
Version 2.1 is backwardly compatible with previous versions of ODL. There are, however, some
features found in ODL Versions 0 and 1 that have been removed from or changed within Version
2. The differences between ODL versions are described in Section 12.7.

Following is a sample ODL data label describing afile and its contents:

/* File Format and Length */
RECORD TYPE = FI XED_LENGTH
RECORD BYTES = 800
FI LE_RECORDS = 860
/* Pointer to First Record of Major Objects in File */
N MAGE = 40
Al MAGE_HI STOGRAM = 840
AANCI LLARY_TABLE = 842
/* 1 mage Description */
SPACECRAFT_NAVE VOYAGER 2
TARGET_NAMVE e}
I MAGE_I D "0514J2- 00"
I MAGE_TI ME 1979-07- 08T05: 19: 117

I NSTRUVENT_NAME
EXPOSURE_DURATI ON
NOTE

NARROW ANGLE_CAMERA

1. 9200 <SECONDS>

"Routine mul tispectral |ongitude
coverage, 1 of 7 franes"

/* Description of the (bjects Contained in the File */

OBJECT = | MAGE

LI NES = 800

LI NE_SAVPLES = 800

SAVPLE_TYPE = UNSI GNED | NTEGER
SAVPLE BI TS =8

END_OBJECT = | MAGE

OBJECT = | MAGE_H STOGRAM
| TEVB = 25

| TEM TYPE = | NTEGER

| TEM BI TS = 32

END_OBJECT = | MAGE_H STOGRAM
OBJECT = ANCI LLARY_TABLE
ASTRUCTURE = "TABLE. FMI"
END_OBJECT = ANCI LLARY_TABLE

END

12-2 Chapter 12. Object Description Language Specification and Usage

12.1.1 Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear
throughout the following sections. These notes deal with issues beyond language syntax and
semantics, but are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which is the major user of ODL -encoded data labels, has imposed additional
implementation requirements for software used within the PDS. These PDS requirements are
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to devel op software to read or write subsets of the ODL. Specifically,
software devel opers may opt to:

?? Eliminate support for the GROUP statement (see Section 12.4.5.2 for additional
information)

?? Not support pointer statements

?? Not support certain types of data values

For every syntactic element supported by an implementation, the corresponding semantics, as
spelled out in this chapter, must be fully supported. Software devel opers should be careful to
assure that language features will not be needed for their particular applications before
eliminating them. Documentation on label reading/writing software should clearly indicate
whether or not the software supports the entire ODL specification and, if not, should clearly
indicate the features not supported.

12.1.1.2 Language Supersets

Software for writing ODL must not provide or allow lexical or syntactic elements over and
above those described below. With the exception of the PV L-specific extensions below, software
for reading ODL must not provide or allow any extensions to the language.

12.1.1.3 PDS Implementation of PVL -Specific Extensions

PDS implementation of software for reading ODL may, in some cases, provide handling of
lexical elementsthat are included in the CCSDS specification of the Parameter Value Language
(PVL), whichis asuperset of ODL. Extensions handled by such software include:

?? BEGIN_OBJECT as a synonym for the reserved word OBJECT
?? BEGIN_GROUP as a synonym for the reserved word GROUP
?? Use of the semicolon (;) as a statement terminator

These lexical elements are not supported by software that writes the ODL subset. They must
either be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT
and BEGIN_GROUP synonyms) upon output.

Chapter 12. Object Description Language Specification and Usage 12-3

12.1.2 Notation
The formal description of the ODL grammar is given below in Backus-Naur Form (BNF).
Language elements are defined using rules of the following form:

defined_element ::= definition

where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
specification, spaces take the place of underscores (for example, units expression).

2. Boldfacetypeisused to denote reserved identifiers. For example:
obj ect
Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. Elements within brackets occur zero or
one times.

4. Sguare brackets followed immediately by an asterisk or plus sign specify repeated
elements. In the case of an asterisk, the elements in brackets may appear zero, one, or
more times. In the case of a plus sign, the elements in brackets must appear at least
once. The repetitions occur from left to right.

5. A vertical bar separates alternative el ements.

6. If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part. The italicized part is intended to convey
some semantic information. For example, both object_identifier and units_identifier
are equivalent to identifier; object_identifier is used in places where the name of an
object isrequired and units_identifier is used where the name of some unit of
measurement is expected.

12.2 Character Set

The character set of ODL isthe International Standards Organ ization’s |SO 646 character set.
The U.S. version of the SO 646 character set is ASCII; the ASCII graphical symbols are used
throughout this document. In other countries certain symbols have a different graphical
representation.

12-4 Chapter 12. Object Description Language Specification and Usage

The ODL character set is partitioned into letters, digits, special characters, spacing characters,
format effectors and other characters:

character :: = letter | digit | special_character |
spacing_character | format_effector |
other_character

12.2.1 ODL Character Set - Letters

The letters are the uppercase letters A - Z and the lowercase letters a - z. ODL language elements
are not case sensitive. Thus the following identifiers are equivalent:

?7? IMAGE_NUMBER
?? Image_Number
?? image_number

Caseissignificant inside of literal text strings, i.e., string “abc” is not the same as the string
13 ABCH .

12.2.2 ODL Character Set - Digits
Thedigitsare0, 1, 2,3,4,5,6, 7, 8, 9.

12.2.3 ODL Character Set — Special Characters
The special characters used in ODL are:

Symbol Name Usage
= Equals The equals sign equates an attribute or pointer to avalue.
{} Braces Braces enclose an unordered set of values.
() Parentheses Parentheses enclose an ordered sequence of values.
+ Plus The plus sign indicates a positive numeric value.
- Minus The minus sign indicates a negative numeric value.
<> Angle brackets Angle brackets enclose a units expression associated with a
numeric value.
Period The period is the decimal placein real numbers.

Quotation Marks Quotation marks denote the beginning and end of atext str ing
value. Case is significant within the quotes of atext string.

’ Apostrophe Apostrophes mark the beginning and end of a symbol value.
Caseis not significant within delimiting apostrophes (a.k.a.
“single quotes’).

Chapter 12. Object Description Language Specification and Usage 12-5

_ Underscore The underscore separates words within an identifier.
: Comma The comma separates individual valuesin a set or sequence.
/ Slant The dlant character indicates division in units expressions. The

dant is also part of the comment delimiter.

* Asterisk The asterisk indicates multipl ication in units expressions. Two
asterisks in arow indicate exponentiation in units expressions.
The asterisk is also part of the comment delimiter.

Colon The colon separates hours, minutes and seconds within atime
value.

Crosshatch Also known as “the pound sign”, this symbol delimits the
digitsin an integer number value expressed in notation other
than base-10.

& Ampersand The ampersand denotes continuation of a statement onto
another line.

A Circumflex The circumflex (or caret) indicates that a value isto be

interpreted as a pointer.

12.2.4 ODL Character Set — Spacing Characters

Two characters, called the spacing characters, separate lexical e ements of the language and can
be used to format characterson aline:

Space
Horizontal Tabulation

12.2.5 ODL Character Set — Format Effectors

The following 1SO characters are format effectors, used to separate ODL encoded statements
into lines:

Carriage Return
Line Feed

Form Feed

Vertical Tabulation

The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other charactersin the ISO 646 character set that are not required to write ODL statements
and labels. These characters may, however, appear within text strings and quoted symbolic
literals:

1$%;?2@[] |

12-6 Chapter 12. Object Description Language Specification and Usage

12.2.6 ODL Character Set — Control Characters

The category of other characters also includes the ASCII control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.g., the control
characters that serve as spacing characters or format effectors). As with the printing charactersin
this category, the control charactersin this category can appear within atext string. The handling
of control characters within text strings and symbolic literals is discussed in Section 12.3.3
below.

12.3 Lexical Elements

This section describes the lexical elements of ODL. Lexical elements are the basic building
blocks of the ODL. Statements in the language are composed by stringing lexical e ements
together according to the grammatical rules presented in Section 12.4. The lexical elements of
ODL are:

?? Numbers
?? Datesand Times

?? Strings

?? ldentifiers

?? Special symbols used for operators, etc.

Thereis no inherent limit on the length of any lexical element. However, software for reading
and writing ODL may impose limitations on the length of text strings, symbol strings and
identifiers. It is recommended that at least 32 characters be allowed for symbol strings and
identifiers and at | east 400 characters for text strings.

12.3.1 Numbers

ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (“123”), but ODL also provides for integer values in other
number bases (for example, “2#1111011#" isthe binary representation of the decimal integer
“123"). Real numbers can be represented in simple decimal notation (“123.4”) or in scientific
notation (i.e., with a base 10 exponent: “1.234E2").

12.3.1.1 Integer NumbersIn Decimal Notation

An integer number in decimal notation consists of a string of digits optionally preceded by a
number sign. A number without an explicit sign is always taken as positive.

integer :: = [sign] unsigned_integer
unsigned_integer :: = [digit] +
sign:= +|-

Chapter 12. Object Description Language Specification and Usage 12-7

Examples — Decimal Integers

0

123
+440
-150000

12.3.1.2 Integer NumbersIn Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which alows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In general, for a number
base X the digits O to X-1 are used. For example, in octal (base 8) the digits 0 to 7 are allowed. If
X is greater than 10, then the letters A, B, C, D, E, F (or their lower case counterparts) are used
as needed for the additional digits.

A based integer may optionally include a number sign. A number without an explicit signis
always taken as positive.

based integer :: = radix # [sign] [extended_digit] + #
extended_digit :: = digit | letter
radix :: = unsigned_integer

Examples —Based Integers

2#1001011#
8#113#
10#75#
16#4B#

16#+4B#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final
exampleis the hexadecimal representation of -75 decimal.

12.3.1.3 Real Numbers

Real numbers may be represented in floating-point notation (“123.4”) or in scientific notation
with a base 10 exponent (“1.234E2"). A real number may optionally include a sign. Unsigned
numbers are always taken as positive.

real :: =[sign] unscaled real |[sign] scaled real

unscaled real :: = unsigned_integer . [unsigned_integer] | .unsigned_integer
scaled redl :: = unscaled real exponent

exponent :: = E integer | e integer

12-8 Chapter 12. Object Description Language Specification and Usage

Note that the letter ‘E’ in the exponent of areal number may appear in either upper or lower
case

Examples — Real Numbers

0.0
123.
+1234.56
-.9981
-1.E-3
314591

12.3.2 Datesand Times

ODL includes lexical elements for representing dates and times. The formats for dates and times
are a subset of the formats defined by the International Standards Organization draft standard
ISO/DIS 8601. (For information regarding PDS specific use of dates and times, see the
Date/Time chapter in this document.)

12.3.2.1 Date and Time Values
Date and time scalar values represent a date, atime, or a combination of date and time:

date _time value:: = date | time | date_time

Thefollowing rules apply to date values:

?? Theyear must be Anno Domini. PDSrequires a4-digit year format be used (i.e.,
“2000”, not “00").

?? Month must be a number between 1 and 12.

?? Day of month must be a number in the range 1 to 31, as appropriate for the particular
month and year.

?? Day of year must bein the range 1 to 365, or 366 in aleap year.

The following rules apply to time values:

?? Hours must bein therange 0 to 23.
?? Minutes must be in the range 0 to 59.
?? Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

?? Hours must bein the range -12 to + 12 (the sign is mandatory).
?? Minutes, if specified, must be in the range 0 to 59.

Chapter 12. Object Description Language Specification and Usage 12-9

12.3.2.2 Implementation of Dates and Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries. Software for writing ODL must always output full four-digit year numbers so that
labels will be valid across century boundaries.

Timesin ODL may be specified with unlimited precision, but the actual precision with which
times will be handled by label reading/writing software is determined by the software
implementers, based upon limitations of the hardware on which the software is implemented.
Developers of label reading/writing software should document the precision to which times can
be represented.

Software for writing ODL must not output local time values, since alabel may be read in atime
zone other than where it was written. Use either the UTC or zoned time format instead.

12.3.2.3 PDS Implementation of Datesand Times

PDS softwarefor reading ODL labels interprets label times as UTC times. On output, a“Z” will
be appended to label times.

12.3.2.4 Dates

Dates can be represented in two formats: as year and day of year; or as year, month and day of
month.

date = year_doy |year_month_day
year _doy .. = year-doy

year_month_day .. = year-month-day

year :: = unsigned_integer

month ;> =unsigned_integer

day :: = unsigned_integer

doy :: = unsigned_integer

Examples — Dates

1990-07-04
1990-158
2001-001

12.3.2.5 Times

Times are represented as hours, minutes and (optionally) seconds using a 24 -hour clock. Times
may be specified in Universal Time Coordinated (UTC) by following the time with the letter Z
(for Zulu, a common designator for Greenwich Mean Time). Alternately, the time may be
referenced to any time zone by following the time with a number that specifies the offset from
UTC. Most time zones are an integral number of hours from Greenwich, but some are different
by some non-integral time; both can be represented in the ODL. A time that is not followed by

12-10 Chapter 12. Object Description Language Specification and Usage

ether the Zulu indicator or atime zone off set is assumed to be alocal time.

time :: = local_time | utc_time | zoned time
local time > =hour_min_sec

utc_time > =hour_min_secZ

zoned_time :: =hour_min_sec zone offset
hour_min_sec :: = hour: minute [:second]

zone _offset :: =signhour [: minute]

hour :: = unsigned_integer

minute . = unsigned_integer

second ;> = unsigned_integer | unscaled_real

Note that either anintegral or afractional number of seconds can be specified in atime value.

Examples— Times

12:00
15:24:127
01:10:39.4575+07 (time offset of 7 hours from UTC)

12.3.2.5.1 Combining Date and Time

A date and time can be specified together using the format below. Either of the two date formats
can be combined with any time format - UTC, zoned or local.

date time::=date T time

The letter T separating the date from the time may be specified in either upper or lower case.
Note that, because thisis alexical element, spaces may not appear within a date, within atime or
before or after the letter T.

Examples — Date/Times
1990-07-04T12:00

1990-158T15:24:127
2001-001T01:10:39.457591+7

12.3.3 Strings
There are two kinds of string elementsin ODL: text strings and symbol strings.

12.3.3.1 Text Strings
Text strings are used to hold arbitrary strings of characters.

Chapter 12. Object Description Language Specification and Usage 12-11

quoted text ::= "[character]*"
The empty string — a quoted text string with no characters within the delimiters — is allowed.

A quoted text string may not contain the quotation mark, which is reserved to be the text str ing
delimiter. A quoted text string may contain format effectors, hence it may span multiple linesin
alabel: thelexical element begins with the opening quotation mark and extends to the closing
guotation mark, even if the closing mark ison afollowing line. Therulesfor interpreting the
characters within atext string, including format effectors, are given in the subsection on string
valuesin Section 12.5.3.

12.3.3.2 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image ID may be a symbol string like *J123-U2A’, or a camerafilter might be a symbol string
like'UV1Y'.

quoted symbol ::=‘[character]+’
A symbol string may not contain any of the following characters:

?? The apostrophe, which is reserved to be the symbol string delimiter
?? Format effectors, which means that a symbol string must fit on asingle line
?? Control characters

12.3.4 Identifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of asymboalic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
wordsin an identifier. Thefirst character of an identifier must be aletter. The last character
may not be an underscore.

identifier : : = letter [letter | digit |_letter | _digit]*

Because ODL is not case sensitive, lower case charactersin an identifier can be converted to
their upper case equivalent upon input to simplify comparisons and parsing.

Examples—Identifiers

VOYAGER

VOYAGER 2

BLUE_FILTER
USA_NASA_PDS 1 0007
SHOT 1 RANGE_TO_SURFACE

12-12 Chapter 12. Object Description Language Specification and Usage

12.3.4.1 Reserved ldentifiers

A few identifiers have special significance in ODL statements and are therefore reserved. They
cannot be used for any other purpose (specifically, they may not be used to name objects or
attributes):

end end group end_object
group object begin_object

12.3.5 Special Characters

ODL isasimple language and it is usually clear where one lexical e ement ends and another
begins. Spacing characters or format effectors may appear before alexical element, between any
pair of lexical elements, or after alexical element without changing the meaning of a statement.

Some lexical elements incorporate special characters (e.g., the decimal point in real numbers or
the quotation marks that delimit atext string). Some special characters are also lexical elements
intheir own right. These are:

= The equals sign is the assignment operator.

: The comma separates the el ements of an array or a set.

* The asterisk serves as the multiplication operator in units expressions.
The slant serves as the division operator within units expressions.

A The circumflex denotes a pointer to an object.

<> Theangle brackets enclose units expressions.

0 The parentheses enclose the elements of a sequence.

{} Thebraces enclose the elements of a set.

The following two-character sequenceis aso alexical element.

** Two adjacent asterisks are the exponentiation sign within units
expressions.

12.4 Statements

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by
the reserve identifier end.

label ::= [statement]*
end

The body of alabel is built from four types of statements:

Chapter 12. Object Description Language Specification and Usage 12-13

statement :: = attribute_assignment_statement |
pointer_statement |
object_statement |
group_statement

Each of the four types of statements is discussed below.

12.4.1 Linesand Records

Labelsare also typically composed of lines, where each lineis a string of characters terminated
by aformat effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format alabel into lines:

?? There should be at most one statement on aline, although a statement may be more than a
singlelinein length. As noted in Section 12.3.5 above, format effectors may appear
before, after or between the lexical elements of a statement without changing the meaning
of the statement. For example, the following statements are identical in meaning:

FI LTER_NAVE = {RED, GREEN, BLUE}
FI LTER_NAVE = {RED

GREEN,

BLUE}

?? Each line should end with a carriage return character followed immediately by a line feed
character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

?? The character immediately following the END statement must be either an optional
spacing character or format effector, such as a space, line feed, carriage return, etc.

A line may include a comment. A comment begins with the two characters “/*” and ends with
the two characters “*/”. A comment may contain any character in the ODL character set except
format effectors, which are reserved to mark the end of line (i.e., comments may not be more
than one line long). Comments are ignored when parsing an ODL label. When the comment
delimiters (“/*” and “*/") appear within atext string, they are not interpreted as acomment - they
are simply part of the text string. For example, in the following example the comment will be
included as part of the text string:

NOTE = "Al'l good nen cone to the /* Exanpl e of incorrect conment*/
aid of their party”

Any characters on aline following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL -
encoded labels in record-oriented files should adher e to the following rules:

12-14 Chapter 12. Object Description Language Specification and Usage

?? A line of an ODL-encoded label may not cross arecord boundary, i.e., each line should
be contained within a single record. Any space left over at the end of arecord after the
last line in that record should be set to all space characters.

?? Theremainder of the record that contains the END statement isignored. The data portion
of the file begins with the next record in sequence.

12.4.2 Attribute Assignment Statement
The attribute assignment statement is the most common type of statement in ODL and is used to
specify the value for an attribute of an object. The value may be a single scalar value, an ordered
sequence of values, or an unordered set of values.

assignment_statement ::= attribute_identifier = value

The syntax and semantics of values are given in Section 12.5.

Examples — Assignment Statements

RECORD BYTES = 800
TARGET _NAME = JUPI TER
SOLAR_LATI TUDE = (0.25 <DEG>, 3.00 <DEG>)
FI LTER_NAVE = {RED,
GREEN,
BLUE}

12.4.3 Pointer Statement
The pointer statement indicates the location of an object.

pointer_statement :: = ~object_identifier = value

Aswith the attribute assignment statement, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

A common use of pointer statementsis to reference afile containing an auxiliary label. For
example:

ASTRUCTURE = " TABLE. FMI™

Thisisapointer statement pointing to afile named “TABLE.FMT” that contains a description of
the structure of the ancillary table from our sample label. Another use of the pointer statement is
to indicate the position of an object within another object. Thisis often used to indicate the
position of major objects within afile. The following examples are from the sample label in
Section 12.1:

N VAGE = 40

Chapter 12. Object Description Language Specification and Usage 12-15

A MACGE_HI STOGRAM
~NANCI LLARY_TABLE

840
842

Thefirst pointer statement above indicates that the image is located starting at the 40th record
from the beginning of the present file. If an integer valueis used to indicate the relative position
of an object, the units of measurement of position are determined by the nature of the object. For
files, the default unit of measurement is records. Alternatively, a units expression can be
specified for the integer value to indicate explicitly the units of measurement for the position. For
example, this pointer:

N VAGE = 10200 <BYTES>

indicates that the image starts 10, 200 bytes from the beginning of thefile.

The object pointers above reference locations in the same files as the label containing the pointer.
Pointers may also reference either byte or record locations in data files that are detached, or
separate, from the labdl file:

N VAGE
NHEADER

("I MAGE. DAT", 10)
("I MAGE. DAT", 512 <BYTES>)

12.4.4 OBJECT Statement

The OBJECT statement begins the description of an object. The description typically consists of
a set of attribute assignment statements defining the values of the object’s attributes. If an object
isitself composed of other objects, then OBJECT statements for the component objects are
nested within the object’s description. There is no limit to the depth to which OBJECT
statements may be nested.

The format of the OBJECT statement is:

object_statement = object = object_identifier
[statement]*
end_object [= object_identifier]

The object identifier gives a name to the particular object being described. For example, in afile
containing images of several planets, the image object descriptions might be named

VENUS IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT
statement is optional, but if it appears it must match the name given at the beginning of the
OBJECT statement.

12.4.4.1 Implementation of OBJECT Statements

It is recommended that all software for writing ODL include the object identifier at the end as
well as the beginning of every OBJECT statement.

12-16 Chapter 12. Object Description Language Specification and Usage

12.4.5 GROUP Statement

The GROUP statement is used to group together statements that are not components of a larger
object. For example, in afile containing many images, the group BEST_| MAGES might contain
the object descriptions of the three highest quality images. The three image objects in the
BEST_IMAGES group don’'t form a larger object: all they have in common is their superior
quality.

The GROUP statement is al'so used to group rel ated attributes of an object. For example, if two
attributes of an image object are the time at which the camera shutter opened and closed, then the
two attributes might be grouped as follows:

GROUP = SHUTTER TI MES
START = 12:30:42.177
STOP = 14:01: 29. 265

END GROUP = SHUTTER TI MES

The format of the group statement is as follows:

group_statement ::= group = group_identifier
[statement]*
end_group [= group_identifier]

The group identifier gives a name to the particu lar group, as shown in the example for shutter
times above. The object identifier at the end of the GROUP statement is optional, but if it
appears it must match the name given at the beginning of the GROUP statement. Groups may be
nested within other groups. Thereis no limit to the depth to which groups can be nested.

12.45.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL include the group identifier at the end as
well as the beginning of every GROUP statement.

12.4.5.2 PDS Usage of GROUP

Although ODL includes the GROUP statement, the PDS does not recommend its use because of
confusion concerning the difference between OBJECT and GROUP.

125 Values
ODL provides scalar values, ordered sequences of values, and unordered sets of values.
value:: = scalar_value | sequence_value | set_value

A scalar value consists of asingle lexical element:

Chapter 12. Object Description Language Specification and Usage 12-17

scalar_value :: = numeric_value |
date time_value |
text_string_value |
symbol_value

The format and use of each of these scalar values are discussed in the sections below.

12.5.1 Numeric Values

A numeric scalar value is either adecimal or based integer number, or areal number. A numeric
scalar value may optionally include a units expression.

numeric_value:: = integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

12.5.2 Units Expressions

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, without the units of
measurement. ODL, however, can represent both the magnitude and the units of a measurement.
A units expression has the following format:

units_expression :: = <units_factor [mult_op units_factor] * >
units_factor -2 = units_identifier [exp_op integer]
mult_op c=*/

exp_op N

A units expression is always enclosed within angle brackets. The expression may consist of a
single units identifier like “ KM” ,for kilometers, or “SEC”, for seconds (for example, “1.341E6
<KM>" or “1.024 <SEC>"). More complex units can also be represented; for example, the
velocity “3.471 <KM/SEC>" or the acceleration “0.414 < KM/SEC/SEC>". Thereis often more
than one way to represent a unit of measure. For example:

0.414 <KM SEC/ SEC>
0.414 <KM SEC** 2>
0.414 <KM SEC** - 2>

are all valid representations of the same acceleration. The following rules apply to units
expressions:

?? The exponentiation operator can specify only a decimal integer exponent. The exponent
value may be negative, which signifies the reciprocal of the units. For example, “60.15

12-18 Chapter 12. Object Description Language Specification and Usage

<HZ>" and “60.15 <SEC** -1>" are both ways to specify afrequency.
?? Individual units may appear in any order. For example, aforce might be specified as
either “1.55 <GM*CM/ SEC**2>" or “ 1.55 <CM*GM/SEC**2>".

12.5.2.1 Implementation of Numeric Values

There is no defined maximum or minimum magnitude or precision for numeric values. In
general, the actual range and precision of numbers that can be represented will be different for
each kind of computer used to read or write an ODL -encoded |abel. Devel opers of software for
reading/writing ODL should document the following:

?? The largest magnitude p ositive and negative integers that can be represented

?? The largest magnitude positive and negative real numbers that can be represented

?? The minimum number of significant digits that areal number can be guaranteed to have
without loss of precision. Thisisto account for the loss of precision that can occur when
representing real numbersin floating point format within a computer. For example, a 32 -
bit floating-point number with 24 bits for the mantissa can guarantee at most 6 significant
digits will be exact (the seventh and subsequent digits may not be exact because of
truncation and round -off errors).

If software for reading ODL encounters a numeric value too large to be represented, the software
must report an error to the user.

12.5.3 Text String Values
A text string value consists of atext string lexical element:

text_string_value :: = quoted_text

12.5.3.1 Implementation of String Values

A text string read in from alabdl is reassembled into a string of ch aracters. The way in which the
string is broken into linesin alabel does not affect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

?? If aformat effector or a sequence of format effectors isencountered within atext string,
the effector (or sequence of effectors) is replaced by a single space character, unless the
last character is a hyphen (dash) character. Any spacing characters at the end of theline
are removed and any spacing characters at the beginning of the following line are
removed. Thisallows atext string in alabel to appear with the left and right margins set
at arbitrary points without changing the string value. For example, the following two
strings are the same:

“To beor not to be”

and

Chapter 12. Object Description Language Specification and Usage 12-19

“To beor
not to be"

?? If thelast character on aline prior to aformat effector is a hyphen (dash) character, the
hyphen is removed with any spacing characters at the beginning of the following line.
This follows the standard convention in English of using a hyphen to break a word across
lines. For example, the following two strings are the same:

“The planet Jupiter is very big”
and

“The planet Jupi -
ter isvery big”

?? Control codes, other than the horizontal tabulation character a nd format effectors,
appearing within a text string are removed.

12.5.3.1.1 PDS Text String Formatting Conventions

The PDS defines a set of format specifiers that can be used in text strings to indicate the
formatting of the string on output. These specifiers can be used to indicate where explicit line
breaks should be placed, and so on. The format specifiers are:

\n Indicates that an end-of-line sequence should be inserted.

\t Indicates that a horizontal tab character should be inserted.

\f Indicates that a page break should be inserted.

\v Must be used in pairs, begin and end. Interpreted as verbatim.
\\ Used to place a backslash in atext string.

For example, the string
“Thisisthefirst line \n and thisis the second line.”
will print as:

Thisisthefirst line
and thisis the second line.

Note: These format specifiers have meaning only when atext string is printed - not when the
string isread in or stored.

12-20 Chapter 12. Object Description Language Specification and Usage

12.5.4 Symbolic Literal Values

A symbolic value may be specified as either an identifier or a symbol string:

symbolic-value :: = identifier | quoted_symbol

The following statements assign attributes to symbolic values specified by identifiers:

TARGET _NAME =10

SPACECRAFT NAME = VOYAGER 2
SPACECRAFT NAME = ' VOYAGER-2'
SPACECRAFT NAME = ' VOYAGER 2'
REFERENCE_KEY ID = SM TH1997
REFERENCE_KEY ID = ' LAUREL&HARDY1997'

The quotes must be used if the symbolic value does not have the proper format for an identifier
or if it contains characters not allowed in an identifier. For example, thevalue ‘FILTER_+ 7’
must be enclosed within quotes, since thiswould not be alegal ODL identifier. Similarly, the
symbolic value ‘U13-A4B’ must be in quotes because it contains a special character (the dash)
not allowed in an identifier. Thereis no harm in putting alegal identifier within quotes. For
example:

SPACECRAFT_NAME = ' VOYAGER 2'
is equivalent to the second example in the list above.
Symbolic values may not contain format effectors, i.e., they may not cross a line boundary.

12.5.4.1 Implementation of Symbolic Literal Values

Symbolic values are converted to upper case on input. This means that a lowercase string is
converted to the equivalent uppercase string; as in the following example:

Origina string: SPACECRAFT_NAME
Converted string: SPACECRAFT_NAME

" Voyager 2'
" VOYAGER 2'

12.5.4.2 PDS Convention for Symbolic Literal Values

Since the current use of the ODL within the PDS does not require syntactic differentiation
between symbols and text strings, PDS prefers that double quotation marks (*) be used instead of
apostrophes around symbol strings.

Chapter 12. Object Description Language Specification and Usage 12-21

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one- and two-dimensional sequences are allowed.

sequence_value :: = sequence_1D | sequence 2D
sequence 1D .. = (scalar_value[, scalar_value]*)
sequence 2D .- = ([sequence _1D] +)

A sequence may have any kind of scalar value for its members. It is not required that al the
members of the sequence be of the same type. Thus a sequence may represent a heterogeneous
record. Each member of atwo-dimensiona sequence is a one-dimensional sequence. This can be
used, for example, to represent atable of values. The order in which members of a sequence
appear must be preserved. Thereis no upper limit on the number of values in a sequence.

For example: AVERAGE ECCENTRI CI TY =(0,1,2,3,4,5,9)

12.5.6 Sets
Sets are used to specify unordered values drawn from some finite set of values.

set_value:: = {scalar_vaue|[, scaar_vaue]*} |{}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets
with nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. Thereis no upper limit on the number of valuesin
a set.

Example

FILTER NAME = { RED, BLUE, GREEN, HAZEL }

12.5.6.1 PDSRestrictionson Sets
The PDS allows only symbol values and integer values within sets.

12.6 ODL Summary
Character Set (Section 12.2)

ODL uses the 1SO 646 character set (the American version of the 1SO 646 standard is ASCII).

12-22 Chapter 12. Object Description Language Specification and Usage

The ODL character set is partitioned as follows:

character .. = letter | digit | special_character |
spacing_character | format_effector |
other_character

letter i=A-Z|az
digit ::=0]112|3|4|5]|6]7|8|9
special _character ={HICDI+-1 071 1=

_L I # &N <>
spacing_character . » = gpace | horizontal tabulation
format_effector ::=carriagereturn | linefeed |

form feed | vertical tabulation
other_character =S |%] 2@ |~

vertical bar | other control characters

Lexical Elements (Section 12.3)

integer . : =[sign] unsigned_integer

unsigned_integer = [digit]+

sign =+ -

based_integer : o =radix #[sign] [extended_digit]+ #

extended_digit o =digit | letter

radix .. =unsigned_integer

real :: =[sign] unscaled real | [sign] scaled_real

unscaled real . : =unsigned_integer . [unsigned_integer] |
. unsigned_integer

scaled red : : = unscaled_real exponent

exponent .. = E integer | einteger

date .. =year_doy | year_month_day

year _doy .. = year - doy

year_month_day . . = year - month - day

year : » = unsigned_integer

month : : = unsigned_integer

day . » = unsigned_integer

doy : : = unsigned_integer

time . : = local_time | utc_time | zoned_time

local_time :: =hour_min_sec

utc_time > =hour_min_sec Z

zoned_time . » = hour_min_sec zone_offset

hour_min_sec > =hour : minute[: second]

zone offset . » =dign hour [: minute]

hour : : = unsigned_integer

minute . : =unsigned_integer

second = unsigned_integer | unscaled real

date time .o =date T time
guoted_text .. = *“[character]*”

Chapter 12. Object Description Language Specification and Usage 12-23

quoted_symbol . . = ‘[character]+’
identifier . : = letter [letter | digit | _letter | _digit]*

Statements (Section 12.4)

|abel .. = [statement]*

end
statement : » = assignment_stmt | pointer_stmt |

object_stmt | group_stmt

assignment_stmt . . = attribute_identifier = value
pointer_stmt . : ="object_identifier = value
object_stmt . . = object = object_identifier

[statement]*

end_object [= object_identifier]
group_stmt > > =group = group_identifier

[statement]*

end_group [= group_identifier]

Values (Section 12.5)

value . : =scalar_value | sequence value| set value
scalar_value . : = numeric_value | date_time _value |

text_string_value | symbolic_value
numeric_value . » = integer [units_expression] |

based _integer [units_expression] |
real [units_expression]

units_expression . » =<units_factor[mult_op units_factor]* >
units_factor > » = units_identifier [exp_op integer]
mult_op r=x|/

exp_op — %%

date_time _value = date | time | date_time
text_string_value = quoted_text

symbolic_value . » = identifier | quoted_symbol

sequence _value . : =sequence_|D | sequence 2D
sequence 1D .. = (scalar_value [, scalar_value]*)
sequence 2D .. = ([sequence_ID]+)

set_value . ={ scalar_value[,scalar_value]* } [{ }

12.7 Differences Between ODL Versions

This section summarizes the differences between the current Version 2 of ODL and the previous
Versions 0 and 1. Software can be constructed to read all three versions of ODL, however it is
important that software for writing labels only write labels that conform to ODL Version 2.

12-24 Chapter 12. Object Description Language Specification and Usage

12.7.1 Differencesfrom ODL Version 1

Version 1 labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and had more restrictive definitions
for sets, which were limited to integer or symbolic literal values, and sequences, which were
limited to arrays of homogeneous values. The following sections detail non-compatible
differences and how they can be handled by software writers.

12.7.1.1 Ranges
Version 1 of ODL had a specific notation for integer ranges:

range value:: = integer..integer

This notation is not allowed in ODL Version 2, though parsers may still recognize the ‘double -
dot’ range notation. On output, arange is now encoded as a two val ue sequence, with the low -
value of the range being the first element of the sequence and the high -value being the second
element of the sequence.

12.7.1.1.1 Delimitersin Sequences and Sets

InVersion 1 theindividual values in sets and sequences could be separated by a comma or by a
spacing character. As of Version 2, acommais required. Parsers may allow spacing characters
between values rather than commas. Software that writes ODL should place commas between all
values in a sequence or Set.

12.7.1.1.2 Exponentiation Operator in Units Expressions

InVersion 1 of ODL the circumflex character (*) was used as the exponentiation operator in
units expressions rather than the two -asterisk sequence (**). Parsers may still alow the
circumflex to appear within units expressions as an exponentiation operator. Software for writing
ODL should use only the ** notation.

12.7.2 Differencesfrom ODL Version O

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM
disks. The major difference between this and subsequent versionsis that Version O did not
include the OBJECT statement. All of the attributes specified in alabel described a single object:
the file that contained the label (or that was referenced by a pointer).

12.7.2.1 Date-Time Format

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date -time format. The format for
Version O dates and date-times is as follows:

Chapter 12. Object Description Language Specification and Usage 12-25

date .- =year / month / day_of_month |year / day_of year
date time .. = date - time zone
zone o = <identifier>

The options for time specification in ODL Version O are a subset of those in Version 2.
Consequently, parsers that handle Version 2 time formats will also handle Version O times.

12.7.3 ODL/PVL Usage

The concept for a Parameter Vaue Language/Format (PVL) is being formalized by the
Consultative Committee for Space Data Systems (CCSDYS). It isintended to provide a human
readabl e data e ement/val ue structure to encode data for interchange. The CCSDS version of the
PVL specification isin preliminary form.

Some organizations that deal with the PDS have accepted PVL as their standard language for
product labels. PVL isasuperset of ODL, so some PVL constructs are not supported by the PDS.
In addition, some ODL constructs may be interpreted differently by PVL software.

The ODL/PVL usage standard defines restrictions on the use of ODL/PVL in archive quality
data sets. These restrictions are intended to ensure the compatibility of PVL with ODL and
existing software.

1. A labd constructed using PVL may be attached - embedded in the samefile as the
data object it describes, or detached - residing in a separate file and pointing to the
datafile the label describes.

2. All statements must be terminated by a <CR> <LF> pair. Semicolons may not be
used to terminate statements.

3. Only aphanumeric characters and the underscore character may be used in data ele -
ments and undelimited text values (literals). In addition, data elements and
undelimited text values must begin with aletter.

4. Keywords must be 30 characters or lessin length.

5. Keywords and standard values must be in upper case. Literals and strings may bein
upper case, lower case, or mixed case.

6. Comments must be contained on a single line, and a comment terminator (*/) must
be used. Comments may not be embedded within statements. Comments may not be
used on the same line as any statement if the comment precedes the statement.
Comments may be on the same line as a statement if the comment follows the
statement and is separated from the statement by at least one white space, but thisis
not recommended.

12-26

10.

11.

12.

13.

14.

15.

Chapter 12. Object Description Language Specification and Usage

Text values that cross line boundaries must be enclosed in double quotation marks

().

Values that consist only of letters, numbers, and underscores and that begin with a
letter may be used without quotation marks. All other text values must be enclosed
in either single (* ’) or double (“ ") quotation marks.

Sequences are limited to two dimensions. Null (empty) sequences are not allowed.
Sets are limited to one dimension. In other wo rds, sets and sequences may not be
used inside a set.

Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark-
ers may be used.

Unit expressions are only allowed following numeric values (i.e.,
“DATA_ELEMENT =7 <BYTES>" isvalid. but “DATA_ELEMENT = MANY
<METERS>" is not).

Unit expressions may include only alphanumeric characters, the underscore, and the
symbols “*”, “/", “(",*)”, and “**” (the last representing exponentiation).

Signs may not be used in non-decimal numbers (i.e., “2#10001#" isvalid, but
“-2#10001#" and “2#-10001#" are not). Only the bases 2, 8, and 16 may be used for
non-decimal numbers.

Alternate time zones (e.g., YYYY -MM-DDTHH:MM:SS.SSS + HH:MM) may not
be used. The only allowed timeformat isYYYY-MM-DDTHH:MM:SS.SSS.

Valuesin integral parts of dates and times must be padded on the left with zeroes as
necessary to fill thefield. In other words, the first of April in the year 2001 must be
written as “2001-04-01", not “2001-4-1"

16. AnEND statement must conclude each ODL/PVL statement list.

The following are guidelines for formatting ODL/PVL expressions.

1.

2.

The assignment symbol (=) must be surrounded by blanks.
Assignment symbols (=) should be aligned if possible.

Keywords placed inside an aggregator (OBJECT or GROUP) must be indented with
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP state-

Chapter 12. Object Description Language Specification and Usage 12-27

ments which enclose them.

4. PDSlabd lines must be 80 characters or less in length, including the end -of -
statement (i.e., <CR> <LF>) delimiter. (Note that while 80 characters can be
displayed on most screens, some editors and databases will wrap or truncate lines
that exceed 72 characters.)

5. Horizontal tab characters may not be used in PDS labels. Although both ODL and
PVL alow the use of these characters some simple parsers cannot handle them. The
equivalent number of space characters should be used instead.

12-28 Chapter 12. Object Description Language Specification and Usage

GROUP, 12-15
PDSuse, 12-16
OBJECT, 12-15
Object Description Language (ODL)
character set, 12-3
comments, 12-13
date and time formats, 12-8
date formats, 12-9
END statement, 12-13
fileformat, 12-13
identifiers
reserved, 12-12
syntax, 12-11
implementation
date and time, 12-9
implementation notes, 12-2
integer formats, 12-6, 12-7
language summary, 12-21
lexical elements, 12-6
numeric values, 12-17
Parameter Value Language (PVL), 12-25
PDS implementation, 12-2
date and time, 12-9
sets, 12-21
symbolic literals, 12-20
PVL guidelines, 12-26
PVL restrictions on archivefiles, 12-25
real number formats, 12-7
revision notes, 12-23
version 0, 12-24
version 1, 12-23
sample data label, 12-1
sequences, 12-20
sets, 12-21
special characters, 12-12
specification, 12-1
statements, 12-12
assignment, 12-14
GROUP, 12-15
OBJECT, 12-15
pointer, 12-14
symbol strings, 12-11
symbolic literals, 12-20
text string values, 12-18
text strings, 12-10

12-2 Chapter 12. Object Description Language Specification and Usage

time formats, 12-9
units of measure, 12-17
Parameter Value Language (PVL), 12-2, 12-25

Chapter 13. PDS Objects 131

Chapter 13. PDS Objects

The Planetary Data System has designed a set of standard objects to be used for submitting
catalog object information as well as for |abeling data products. These standard objects, along
with definitions of individual keywords comprising those objects, are defined in the Planetary
Science Data Dictionary. In addition, object definitions and examples are also included in
Appendix A and Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there aretwo
categories of definitions: generic and specific. A generic object definition is the universal
definition of an object, or superset of keywords that can be used. A specific object definitionisa
subset of keywords used for a particular data product to allow effective use of validation tools.

Generic object definitions are designed and approved by the Planetary Data System, and defined
in the Planetary Science Data Dictionary. Each object definition lists the elements and sub-
objects required to be present each time the object is used in a product label. The dictionary
definition also provides alist of additional, optional keywords that are frequently used by data
preparers. Finally, note that any e ement defined in the PSDD may be included as an optional
element in any object definition, at the discretion of the data preparer.

A specific objectdefinition is defined for a particular data product and is based on asingle
generic object. The data preparer, in consultation with a data engineer, combines all the required
elements of that object with a set of optional elements selected for their relevance to the data at
hand. The result is a specific object definition. This definition is subject to approval during a
design review.

The following examples illustrate the evolution from the generic IMAGE object to a specific
IMAGE object, followed by an instance of that specific IMAGE. Note that when a specific
object definition is created and used, the usage should be consistent for al labels using that
object.

OBJECT = GENERI C_OBJECT_DEFI NI TI ON
NANME = | MAGE

STATUS_TYPE = APPROVED

STATUS_NOTE ="V2.1 1991-01-20 MM New Data (bject Definition"
DESCRI PTI ON ="An inmage object is a regular array of sanple
values. Inage objects are normally processed with special display tools to

produce a visual representation of the sanple values. This is done by assigning
bri ghtness levels or display colors to the various sanple val ues. | nmages are
conposed of LINES and SAMPLES. They nmay contain nmultiple bands, in one of
several storage orders

Note: Additional engineeri ng val ues may be prepended or appended to each LINE
of an inmage, and are stored as concatenated TABLE objects, which nust be naned
LI NE_PREFI X and LI NE_SUFFI X. | MAGE obj ects nay be associated w th other

obj ects, including H STOGRAMs, PALETTEs, HI STORYs and TABLEs whi ch contain
statistics, display paraneters, engineering values or other ancillary data."

13-2 Chapter 13. PDS Objects

SOURCE_NAMVE = "PDS CN' M MARTI N'
REQUI RED_ELEMENT SET = { LI NE_SAVPLES,
LINES, SAMPLE BI TS,
SAVPLE_TYPE}
OPTI ONAL_ELEMENT_SET = { BAND_SEQUENCE,

BAND STORAGE TYPE,
BANDS, CHECKSUM DERI VED MAXI MUM
DER VED M NI MUM DESCRI PTI ON,
ENCODI NG TYPE, FIRST_LI NE,
FI RST_LI NE_SAMPLE, | NVALI D,
LI NE_PREFI X_BYTES, LI NE_SUFFI X BYTES, M SSI NG
OFFSET, SAMPLE BI T_MASK, SAMPLI NG FACTOR,
SCALI NG FACTOR, SOURCE_FI LE_NAME,
SOURCE_LI NES, SOURCE_LI NE_SAMPLES,
SOURCE_SAMPLE BI TS, STRETCHED FLAG
STRETCH_MAXI MM STRETCH M NI MUM PSDD}

REQUI RED_OBJECT_SET = "NA"

OPTI ONAL_OBJECT_SET = "NA"

OBJECT_CLASSI FI CATI ON_TYPE = STRUCTURE

OBJECT = ALI AS

NAVE = "N A"

USAGE_NOTE = "NA"

END_OBJECT = ALI AS

END_OBJECT = GENERI C_OBJECT_DEFI NI TI ON

This next exampleillustrates an IMAG E object definition being used for a specific case.

OBJECT = SPECI FI C_OBJECT_DEFI NI TI ON

NAVE = XYZ_| MAGE

STATUS_TYPE = APPROVED

STATUS_NOTE = "V2.1 1991-02-10 TMA New specific data object
definition"

DESCRI PTI ON = "The XYZ image is..."

SOURCE_NAME "PDS CN' M MARTI N

REQUI RED_ELEMENT SET {LI NE_SAVPLES, LINES, SAMPLE_BITS,
SAVPLE_TYPE, SAMPLI NG FACTCR,
SOURCE_FI LE_NAME,

SOURCE_LINES, SOURCE_ LI NE_SAMPLES,
SOURCE_SAMPLE BI TS, FIRST_ LI NE,

FI RST_LI NE_SAMPLE}

OBJECT_CLASSI FI CATI ON_TYPE = STRUCTURE

OBJECT = ALI AS

NAVE = "NA"

USAGE_NOTE = "NA"

END_OBJECT = ALI AS

END_OBJECT = SPECI FI C_ OBJECT_DEFI NI TI ON

13.2 Primitive Objects

Generic objects have a subclass called primitive objects that includes the ARRAY,,
COLLECTION, ELEMENT, and BIT_ELEMENT objects. The primitive objects are used as the

Chapter 13. PDS Objects 13-3

building blocks for describing very irregular data that cannot be accommodated by any other
generic object. If at all possible, standard, well-supported generic objects (such as TABLE and
IMAGE) should be used to describe archival data.

13-4 Chapter 13. PDS Objects

objects
generic, 13-1
example, 13-1
primitive, 13-2
specific, 13-1
example, 13-1
standard objects, 13-1

Chapter 14. Pointer Usage 14-1

Chapter 14. Pointer Usage

Pointers are used within PDS labels to indicate the relative locations of objects in the samefile
and to reference external files. Pointer statements begin with a caret (*~”) and the name of aPDS
object or element. The value part of the pointer statement indicates the location of the referenced
information.

14.1 Typesof Pointers

Pointer statements fall into three main categories. data location pointers, include pointers, and
related information pointers.

14.1.1 Data L ocation Pointers (Data Object Pointers)

The most common use of pointers isfor linking object descriptions to the actual data. The syntax
of these pointers depends on whether the label is attached or detached from t he data it describes.
There are five forms for the value fields, as shown in these examples:

(1) ~NMAGE =12

(2) ~NMAGE = 600 <BYTES>

(3) AINDEX_TABLE ="INDEX.TAB"

(4) ~SERIES = ("C100306.DAT", 2)

(5) A"SERIES ("C100306.DAT", 700 <BYTES>)

Examples (1) and (2) are pointers in attached labels. This type of pointer allows reading software
to scan the label for the appropriate pointer and then skip right to the data at its location
elsewhereinthefile. Inthe first case, the data begin at record 12 of the labeled file. In the
second, the data begin at byte 600.

External data files are referenced in examples (3), (4) and (5). Since these pointers occur in
detached labels, they must identify a file name and (optional) offset. 1n example (3), the data
begin at record 1 of the datafile “INDEX.TAB” (i.e., no explicit offset is taken as an offset of
“1"). Inexample (4), the data begin at record 2 of the datafile, "C10030 6.DAT", whereas in
example (5), the data begin at byte 700.

14.1.2 Include Pointers

Another common use of pointers isto reference external filesin PDS labels or catalog objects.
Files referenced by include pointers are included directly at the location of the pointer statement.
These pointers are classified as include-type pointers since they act like the “#include”
statementsin C program source files. STRUCTURE, CATALOG, and MAP_PROJECTION
pointers fall into this category. Following are some examples of include pointer statements:

(1) ~STRUCTURE
(2) ~STRUCTURE

"ENGTAB.FMT"
"IMAGE.FMT"

14-2 Chapter 14. Pointer Usage

(3) ~CATALOG ="CATALOG.CAT"
(4) ~DATA_SET_MAP_PROJECTION ="DSMAPDIM.CAT"

The structure filein example (1) isreferenced by a TABLE object. The “ENGTAB.FMT” file
contains column object definitions needed to complete the TABLE definition. Some column
definitions might be stored in a separate file if, for example, a number of different TABLE
objects use the same definitions. Similarly, in example (2) an IMAGE object definition (i.e., al
statements beginning with “OBJECT = IMAGE” and ending with “END_OBJECT = IMAGE”")
is contained in an external file called “IMAGE.FMT".

In example (3), the external file*CATALOG.CAT” i sreferenced by aVOLUME object in order
to provide afull set of catalog information associated with the volume without having to
duplicate definitions that already exist in the other file.

In example (4), the external file*“DSMAPDIM.CAT” isreferenced by an
IMAGE_MAP_PROJECTION object to complete the map projection information associated
with the image.

14.1.3 Related Information Pointers (Description Pointers)

Thethird and final use of pointers occursin PDS labels that reference external files of additional
documentation of special use to human readers. These pointers are formed using elements that
end in “DESCRIPTION” or “ DESC” . They reference text files not written in ODL. Note: These
pointers are not meant to be used to refer to software tools.

For example:

ADESCRIPTION ="TRK_2 25.ASC"
In this example, the pointer references an external ASCII document file, TRK_2 25.ASC, which
provides a detailed description of the data. Note that in this case the documentation file must

have its own PDS label, since the label containing the "DESCRIPTION pointer describes the
contents of adifferent file.

Chapter 14. Pointer Usage 14-3

14.2 Rulesfor Resolving Pointers
Following are the rules for resolving pointer references to external files (see the Volume
Organization and Naming chapter in this document for information about physical and logical
volume structures):
For a pointer statement in FILE_A:

(D) Look in the same directory as FILE_A

(2a) For asingle physical volume (no logical volumes), look in the following top level

directory:
Pointer Directory
ASTRUCTURE LABEL
ACATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
AINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

(2b) Withina logical volume, look in the top level subdirectory specified by the
LOGICAL_VOLUME_PATH_NAME keyword:

Pointer LOGICAL_VOLUME_PATH_NAME/
Directory
ASTRUCTURE LABEL
ACATALOG CATALOG
"DATA_SET_MAP_PROJECTION CATALOG*
AINDEX_TABLE INDEX
ADESCRIPTION or "TEXT DOCUMENT

* Note: For volumes using PDS Version 1 or 2 standards, the MAP_PROJECTION files
may be located inthe LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

14-4

data pointers, 14-1
description pointers, 14-2
include pointers, 14-1
pointers
data, 14-1
in attached labels, 14-1
in detached labels, 14-1
description, 14-2
include, 14-1
rulesfor resolving, 14-3
usein labels, 14-1

Chapter 14. Pointer Usage

Chapter 15. Record Formats 151

Chapter 15. Record Formats

The choice of proper record format for a datafileis influenced by a number of factors. In
general, the PDS strongly recommends a record format of fixed-length or stream be used
whenever possible to ensure transportability across operating systems and computer platforms
and to avoid potential difficulties with interpretation of the underlying data. Records of type
FIXED _LENGTH arerequired for ASCII files described by TABLE Objects. Records of type
VARIABLE LENGTH may be used in cases where storage efficiency is amagjor consideration,
as, for example, in storing compressed images. Records of type STREAM should be used for text
files for ease of transportation to various computer systems. Input/output operations with stream
fileswill generally use string-oriented access, retrieving one delimited record from the file each
time.

The RECORD_TY PE eement in the PDS label indicates the format of the records in the
associated data file (attached or detached).

Table 15.1: Recommended Record Formats

RECORD_TYPE= RECORD_TYPE=STREAM | RECORD_TYPE=VARIABLE
FIXED LENGTH

Data format BINARY, ASCII ASCII BINARY

Environment STRUCTURED AD HOC STRUCTURED (VAX/VMYS)

Data volume LARGE SMALL, MEDIUM VERY LARGE

Input / Output READ / WRITE STRING I/O CUSTOM, SPICE

15.1 FIXED_LENGTH Records

Records of type FIXED_LENGTH normally use a physical record length (RECORD_BYTES)
that corresponds directly to the logical record length of the data objects (that is, one physical
record for each image line, or one physical record for each row of atable). In some cases, logical
records are blocked into larger physical records to provide more efficient storage and access to
the data. Thisblocking is still an important consideration when storing data on magnetic tape,
(which requires a gap on the tape between records), but is not generally a consideration in data
sets stored on magnetic or CD-ROM disks. In other cases, the physical record lengthis
determined by compatibility with external systems or standards, asin FITS-formatted files.

The PDS strongly recommends using a physical record length that matches the logical r ecord
length of the primary data object in the file for greatest compatibility with application software.
In the data label, RECORD_BY TES defines the physical record length.

Figure 15.1 illustrates the physical and logical structure used to build a standard PDS
FIXED LENGTH file.

15-2 Chapter 15. Record Formats

Physical Structure Logical Structure
+4—— Record Bytes = 1204 »
Label Record 1 Lable ling 1 <cr If> Label line 2 <cr If= ...
Label Record 2 Label line 59 <cr If= Label line 60 <cr lf= | Blank fill
Histogram Rec 256 32 bit integers | Blank fil
Eng Table Rec eng data Blank fill
Line Hdr Rec 1
Line Hrd Rec 2
Line Hdr Rec 55 | |] [| | | | | Blank fill
Line Rec 1
Line Rec 2
Line Rec 1056 | |

Figure15.1 Physical and Logical Structure for Fixed Length Files

15.2 STREAM Records

The STREAM record typeis reserved for ASCII text files. The records must be delimited by the
two-character (carriage return, linefeed) sequence (“<CR><LF>" or “ CR/LF"). Thisisthe same
record delimiter used for all PDS label and catalog files.

All major operating systems recognize one of either the carriage return, the line feed, or the
CR/LF sequence as an ASCII record delimiter; thus, <CR><LF> will work in all cases. There are
utilities available for Macintosh (Apple File Exchange) and Unix (tr tranglation utility) systems
to remove the unneeded extra contr ol character.

Note that the STREAM record type should only be used in those cases where the data contain
delimited ASCII records that are not of fixed length. The FIXED _LENGTH specification should
be used wherever possible.

15.3 VARIABLE_LENGTH Records

PDS datafiles using the VARIABLE_LENGTH record type must use the VAX/VMS counted
byte string format. That is, each record string is preceded by a two-byte LSB integer containing
the length of the record. The records may not contain carriage control characters.

The use of the VARIABLE_LENGTH record type is discouraged because of its inherent
dependence on a priori knowledge of the record structure for proper reading and writing.
Notwithstanding, VARIABLE_LENGTH records may be used in the following circumstances:

?? When supporting software, which can be executed on a variety of hosts, is provided along
with the data. For example, the Voyager CD -ROM disks contain variable-length

Chapter 15. Record Formats 15-3

compressed images along with a decompression program that can be compiled and
executed on VAX, PC, Macintosh and UNIX platforms. The decompression program
reformats the data into a variety of forms.

?? When the files are intended for use only in a specific environment that supports the
selected record structure. For example, the Viking Infrared Thermal Mapper (IRTM)
CDROM uses a VAX/VMS variablelength record format for software and command
files. Note, however, that such proprietary formats are generally inappropriate for PDS
deep archiving purposes and should be vigorously avoided in archive volumes.

15.4 UNDEFINED Records

Records with an undefined record type have no specific record structure. For files with attached
labels, the label portion should be written using the STREAM conventions described above.
When the record type is designated UNDEFINED, no record terminators are recognized and no
record length isimplied; the data are taken to b e a continuous stream of bytes.

The use of the UNDEFINED record type when referring to asingle datafileis strongly
discouraged. “RECORD_TYPE = UNDEFINED” is properly used in cases where a single label
points to two or more different data files with different record types (i.e., one filewith STREAM
records and another with VARIABLE_LENGTH records).

154

ASCII text files
record format, 15-2
datafiles
record format, 15-1
record formats, 15-1
blocking, 15-1
FIXED_LENGTH, 15-1
STREAM, 15-2
UNDEFINED, 15-3
VARIABLE LENGTH, 152
VAX counted byte strings, 15-2
RECORD_TYPE, 15-1
STREAM, 15-2
UNDEFINED, 15-3
VARIABLE LENGTH, 15-2

Chapter 15. Record Formats

Chapter 16. SFDU Usage 16-1

Chapter 16. SFDU Usage

This standard defines restrictions on the use of Standard Formatted Data Units (SFDUS) in
archive quality data sets. PDS does not require that data products be packaged as SFDUSs.
However, if data products are packaged as SFDUS, the following standards apply.

The Consultative Committee for Space Data Systems (CCSDS) has prepared a recommendation
for the standardization of the structure and construction rules of SFDUs for the inter change of
digital space-related data. An SFDU is a type-length-value object. That is, each SFDU consists
of: atype identifier which indicates the type of data within the SFDU; alength field which et her
states the length of the data or indicates how the data are delimited; and a value field which
contains the actual data. Both the type and the length fields are included in a 20 -byte label, called
an SFDU label in this document. The value field immediately follows the 20-byte SFDU Label.
For PDS data products, this value field is the PDS label, including one or more data object
definitions.

There are three versions of SFDUs. In Version 1, the length of an SFDU is represented in binary.
In Version 2, the length could aso be represented in ASCII. In Version 3, the length can be
represented in binary, ASCII, or using one of several delineation techniques. Unless previously
negotiated, all PDS data products packaged as SFDUs must be constructed using Version 3
SFDU Labels.

A Version 3 SFDU label consists of the following parts:

) Control Authority ID 4 Bytes
2) Version ID 1 Byte
3) ClassID 1 Byte
4) Delimiter Type 1 Byte
5) Spare 1 Byte
6) Description Data Unit ID 4 Bytes
7) Length 8 Bytes

The Control Authority ID and the Description Data Unit ID together form an identifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary, in the PDS case) and syntactic (Object Definition Language, 2.0) description of the
valuefield. . The Data Description Unit ID varies by data product type. It is supplied by the JPL
Control Authority and is usually documented in the science data product Software Interface
Specifications (SIS).

Version 3 allows delimiting of SFDUs either by end-of-file or by start and end markers rather
than by explicit byte counts. Further details of the SFDU architecture will not be discussed here.
Other sources of information can be found in the SFDU References listed in the Introduction to
this document.

16-2 Chapter 16. SFDU Usage

Since archive quality data sets are internally defined, only alimited set of SFDU |abels are used
to identify the files on a data volume in order to simplify not only the archive products
themselves, but also the processing of those products by software. PDS labels are included in the
data products, and the information in these PDS labels are considered more than adequate for
dataidentification and scientific analysis.

PDS does not require SFDU labels in its archive products. However, SFDU labels can be
accommodated in PDS products when they are required by projects or other agencies concerned
in the preparation of the data. The standard use of SFDUs in PDS labels from current missions
and data restorations is different from the use of SFDUs in data products from upcoming
missions fully supported by the Jet Propulsion Laboratory’s Advanced Multi-Mission Operations
System (AMMOS). The following sections define the standards for including SFDUs in each
case.

Two SFDU organizations are allowed in PDS data products. The first organization (the ZI
Structure) has been used historically in PDS data products from restoration and past missions.
The second organization (the ZKI organization) is requ ired for data products that pass through
the JPL Advanced Multi-Mission Operations System (AMMOS) project database.

16.1 TheZl SFDU Organization

Any PDS data products packaged as SFDUs that are not required to pass through the AMMOS
project database as part of an active mission may use the following SFDU organization.

Each instance of a data product (file) in a data set must include two (and only two) SFDU labels.
Thesearea Z Class SFDU label and an | Class SFDU label. The two SFDU labels are
concatenated (i.e. Z, then 1) and left justified in the first line or record of the PDS label for each
dataproduct. (SeeFigure 16.1.) In the case of data products with detached PDS labels, the two
SFDU labels must appear in the first record of the PDS label files and no SFDU labels appear in
the data object files. (See Figure 16.2.)

Z I
PDS LABEL
FILE
END
DATA OBJECT
EOF

Chapter 16. SFDU Usage

16-3

Figure 16.1 Attached PDS Label Example for non-AMMOS compatible products

Z I
FILE PDS LABEL
END EOF
FiLg DATA OBJECT
EOQOF

Describes

Figure 16.2 Detached PDS Label Example for non-AMMOS compatible products

The first SFDU label must beaZ Class Version 3 SFDU labdl. “Z Class’ indicates that the value
field (everything after the first 20 bytes) is an aggregation. In this case, the aggre gation consists
of only the | Class SFDU. This |label also indicates that the delimiter type is End -of-File and that
this SFDU (data product) is terminated by a single End-of-File. It is formed as follows:

1) Control Authority ID
2) Version ID

3) ClassID
4) Delimiter Type
5) Spare

6) Description Data Unit ID
7) Length Field

Example: CCSD3ZF000010000000I

CCsD

3

z

F

0

0001
00000001

The second SFDU label must bean | Class Version 3 SFDU labd. “Class |” indicates that the

16-4

Chapter 16. SFDU Usage

value field (everything after the second 20 bytes) is application data, i.e., the PDS label and the
data object(s). The Data Description Unit ID of “PDSX” indicates that the data product uses the
Object Description Language (ODL) syntax and the Planetary Science Data Dictionary
semantics to present descriptive information. This SFDU label also indicates that the SFDU (data
products) will be terminated by a single End-of-File. It is formed as follows:

1)
2)
3)
4)
5)
6)
7)

Control Authority ID
Version ID

ClassID

Delimiter Type

Spare

Description Data Unit ID
Length Field

NJPL

3

I

F

0

PDSX
00000001

Example: NJPL 3IFOPDSX 0000000l

END <CH= «<LF=

CCSD3ZF0000100000001NJPL3FOPDSX00000001 <CR=> <LF=
PDS_VERSION_ID = PDS3 <CR=> <LF>

RECORD_TYPE = STREAM <CR> <LF=>

RECORDS = 100 <CR= <LF=

DATA OBJECT

EOF

Figure 16.3: SFDU Example

The two SFDU labels are concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD_TYPE = STREAM or FIXED _LENGTH or UNDEFINED, the concatenated
SFDU labels must be followed immediately by <CR><LF>. For data products that have
RECORD_TYPE =VARIABLE LENGTH, the two SFDU labels may not be followed by

<CR><LPF>.

STREAM example
FIXED_LENGTH Example

CCSD3ZF000010000000INJPL 31FOPDSX 00000001 <CR><LF>
CCSD3ZF000010000000INJPL 3IFOPDSX 0000000l <CR><LF>

VARIABLE_LENGTH Example CCSD3ZF0000I0000000!NJPL 3IFOPDSX 0000000l

UNDEFINED Example

CCSD3ZF000010000000INJPL 3IFOPDSX 0000000l <CR><LF>

Chapter 16. SFDU Usage 16-5

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Labdl is attached, the data object begins on the
next record. If the PDS labd is detached, the END statement is the last line of thefile.

16.2 TheZKI SFDU Organization

Any PDS data products packaged as SFDUs that are required to pass through the AMMO S
project database as part of an active mission must use the following SFDU organization. All data
products of this type are assumed to have attached PDS labels.

Each instance of adata product (file) in a data set must include four (and only four) SFDU

labels. These are: the Z Class SFDU label; the K Class SFDU label; the End-Marker label for the
K Class SFDU; and the | Class SFDU label. The Z and K Class SFDU labels are concatenated
(i.e., Z, then K) and left justified in the first line or record of the PDS label for each data product.
The End-Marker for the K Class SFDU label and the | Class SFDU label areright justified on the
last record of the PDS label (following the END statement). See Figure 16.4.

Z K # #
PDS LABEL
FILE END ROK | 1
DATA OBJECT
EOF

Figure 16.4: PDS Label Example for AMMOS compatible products

Thefirst SFDU label must be aZ Class Version 3 SFDU label. The Z Class indicates that the
valuefield (everything after the first 20 bytes) is an aggregation. In this case, the aggregation
consists of aK Class (PDS label) and an | Class (data object) SFDU. This label also indicates
that the delimiter type is End-of-File and that this SFDU (data product) is terminated by asingle
End-of-File. It isformed as follows:

1) Control Authority CCSD
2) Version ID 3
3) ClassID Z
4) Delimiter Type F
5) Spare 0

6) Description Data Unit ID 0001
7) Length Field 00000001

16-6 Chapter 16. SFDU Usage

Example: CCSD3ZF0000I0000000I

The second SFDU label must be aK Class Version 3 SFDU label. “Class K” indicates that the
value field (everything after the second 20 bytes) is catalog and directory information, i.e., the
PDS label (sometimes referred to as the K Header). The Data Description Unit ID of PDSX
indicates that the PDS label uses the Object Description Language (ODL) syntax and the
Planetary Science Data Dictionary semantics to present data descriptive information. The SFDU
label also indicates that the SFDU is delimited by a Start-Marker/End-Marker pair. It is formed
asfollows:

1) Control Authority ID NJPL

2) Version ID 3

3) ClassID K

4) Delimiter Type S

5) Spare 0

6) Description Data Unit ID PDSX

7) Length Field H#Hmark#

The marker pattern (“##mark##” in the example) ¢ an be set to any string that is unlikely to be
repeated el sewhere in the data product.

Example: NJPL 3K SOPD SX##mark##

The two SFDU labels must be concatenated and left justified in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. For data products with
RECORD_TYPE equal to VARIABLE LENGTH, the two concatenated SFDU labels must not
be followed by <CR><LF>.

Example: CCSD3ZF0000I0000000I NJPL 3K SOPD SX##mark##

The remainder of the PDS label begins on the next line. The last line of the PDS label contains
the END statement. Then, in the same line or record, right justified, isthe End -Marker for the K
Class SFDU and the | Class SFDU label. The End-Marker pattern must appear as.

Example CCSD$$MARKER##mark##

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, “#mark##’). Next must be an | Class Version 3 SFDU label. “Class |” indicates that
the value field (everything after the SFDU labdl) is appli cation data, i.e., the data object. The
Data Description Unit ID varies by data product type. It is supplied by the JPL Control Authority
and is usually documented in the science data product Software Interface Specifications (S1S).
The SFDU label also indicates that the SFDU will be terminated by a single End-of-File. It is
formed as follows:

Chapter 16. SFDU Usage 16-7

1) Control Authority ID NJPL
2) Version ID 3
3) ClassID I
4) Delimiter Type F
5) Spare 0
6) Description Data Unit ID XXXX
7) Length Field 00000001
Example: NJPL 31F001060000000I (where XX XX has been replaced by 0106.)

The two SFDU labels must be concatenated, right justified, and appear in the last line or record
of the PDS label following the END statement. (If it happens that there are not 40 bytes left in
the last record of the PDS label, add an additional record and right justify the two SFDU labels.)
Note that there are no characters between the two SFDU |abels, and that the marker pattern and |
Class SFDU Labels are transparent to PDS label processing software.

Example END CCSD$$MARKER##mark##NJPL 31 F001060000000l

The data object begins with the next physical record.

16.3 Examples

RECORD_TYPE = STREAM:
End Statement blank(s) End marker | Class SFDU End of record

END CCSD$$M A RK ER#mark##NJPL 31 FO010600000001<CR><LF>

RECORD_TYPE =FIXED _LENGTH:
End Statement Terminator Record Boundary

END <CR><LF> bbbbb CCSD$$M ARK ER##mark##NJPL 3 F0010600000001

RECORD_TYPE = UNDEFINED:
State ment terminator

End Statement
END<CR><LF> CCSD$$M A RK ER##mark##N JPL 31 F0O010600000001

16-8 Chapter 16. SFDU Usage

RECORD_TYPE =VARIABLE LENGTH:
Record Length END end of statement

END CCSD$$MARKER##mark##NJPL 31F0010600000001

16.4 Exceptionsto this Standard
Software files and document files should not be packaged as SFDUs.

Previous versions of the PDS standards expressed the ZI SFDU l|abels as an ODL statement. The
ZI SFDU labels were followed by “= SFDU_LABEL”.

Example: CCSD3ZF0000100000001NJPL 31IFOPDSX 00000001 = SFDU_LABEL

Chapter 16. SFDU Usage

END statements, 16-5
Standard Formatted Data Unit (SFDU)
AMMOS usage, 16-5
definition, 16-1
examples
FIXED LENGTH file, 16-7
STREAM file, 16-7
UNDEFINED file, 16-7
VARIABLE LENGTH file, 16-8
exceptions, 16-8
| class, 16-2, 16-5
K class, 16-5
usage in PDS products, 16-1
versions, 16-1
Z class, 16-2, 16-5

16-9

Chapter 17. Usage of N/A, UNK, and NULL 17-1

Chapter 17. Usage of N/A, UNK and NULL

17.1 Interpretation of N/A, UNK, and NULL

During the completion of data product labels or catalog files, one or more values may not be
available for some set of required data elements. In this case PDS provides the symbolic literals
“N/A”, “UNK”, and “NULL", each of which is appropriate under different circumstances.

17.1.1 N/A

“N/A” (“Not Applicablée’) indicates that the values within the domain of this data e ement are
not applicablein thisinstance. For example, a data set catal og file describing NAIF SPK kernels
would contain the line:

| NSTRUMENT ID = "N A"
because this data set is not associated with a particular instrument.

“N/A” may be used as needed for data elements of any type (i.e., text, date, numeric, etc.).

17.1.2 UNK

“UNK” (“Unknown”) indicates that the value for the data element is not known and never will
be. For example, in a data set comprising a series of images, each taken with a different filter,
one of the labels might contain the line:

FI LTER_NAME = " UNK"

if the observing log recording the filter name was lost or destroyed and the name of thefilter is
not otherwise recoverable.

“UNK” may be used as needed for data elements of any type.

17.1.3 NULL

“NULL” isused to flag values that are temporarily unknown. It indicates that the data preparer
recognizes that a specific value should be applied, but that the true value was not readily
available. “NULL" isaplaceholder. For example, the line:

DATA_SET_RELEASE DATE = " NULL"

might be used in a data set catalog file during the devel opment and review process to indicate
that the release date has not yet been determined.

17-2 Chapter 17. Usage of N/A, UNK, and NULL

Note that all “NULL” indicators should be replaced by their actual values prior to final archiving
of the associated data.

17.2 Implementation Recommendationsfor N/A, UNK, and NULL

The figurative constants defined above require special values for storage in data base systems.
The PDS has the following recommendations for software intended to support PDS labels and
catal og objects:

1. Inthe case of character fields, the explicit string can be stored in the corresponding data
elements without further modification. This approach can also be taken where date and
time data types are stored as strings.

2. Numeric fields require special flag values to represent the “N/A”, “NULL” and “UNK”
indicators. Table 17.1 provides suggested standard flag values for each case.

In creating index files based on element values extracted from PDS labels, there are two options
for dealing with “N/A”, “ NULL", and “UNK” in non-string columns:

1. The character strings can be used explicitly in the index. Note, however, that in this case
the DATA_TY PE of the column may be forced to * CHARACTER”, since, for example,
encountering the string “NULL” in what is otherwise a numeric column would cause a
read failure.

2. The character strings can be replaced with an appropriate numeric constant. In this case
the substitution is indicated in the corresponding column definition by including the
NOT_APPLICABLE_CONSTANT, NULL_CONSTANT or UNKNOWN_CONSTANT
elements as needed.

Table17.1: Numeric valuesfor N/A, UNK, NULL

Signed Signed Unsigned Unsigned Tiny Integer Real

I nteger I nteger I nteger I nteger (1 byte-

(4 byte) (2 byte) (4 byte) (2 byte) unsigned)
N/A -2147483648| -32768 4294967293 || 65533 locally defined -1.E32
UNK 2147483647 || 32767 4294967294 || 65534 locally defined +1.E32
NULL NULL* NULL* NULL* NULL* NULL* NULL*

?? “NULL” refersto a system-defined null value. The availability of NULL as a universal value across data
types in some data management systems simplifies the implementation of the figurative constant "NULL".
However, if asystem "null" is not available, then either a) an arbitrary value can be chosen, or b) the

Chapter 17. Usage of N/A, UNK, and NULL 17-3

meanings of UNK and NULL can be combined and the token or numeric representat ion of UNK used.

17-4 Chapter 17. Usage of N/A, UNK, and NULL

N/A constant, 17-1

Not Applicable constant, 17-1
NULL constant, 17-1

UNK constant, 17-1
Unknown constant, 17-1

Chapter 18. Units of Measurement 181

Chapter 18. Units of Measurement

The uniform use of units of measure facilitates broad catal og searches across archive
systems.The PDS standard system for units, where applicable, isthe Systeme Internationale
d'Unites (SI). The default units for data elementsin the Planetary Science Data Dictionary
(PSDD) are determined as each element is defined and added to the dictionary. Specific unit
definitions are also included in the PSDD.

In cases where more than one type of unit is commonly used for a given data element, an
additional data element is provided to explicitly identify the corresponding unit.
SAMPLING_PARAMETER_RESOLUTION and SAMPLING_PARAMETER_UNIT are one
such pair. The PDS allows exceptions to the Sl unit requirement when common usage conflicts
with the SI standard (e.g., angles which are measured in degrees rather than radians).

Both singular and plural unit names, as well as unit symbols, are alowed. The double asterisk
(**) isused, rather than the caret (*), to indicate exponentiation. When the units associated with
avalue of a PDS element are not the same as the default units specified in the PSDD (or when
explicit units are preferred), a unit expression is used with the value. These unit expressions are
enclosed in angular brackets (< >) and follow the value to which they apply.

Examples

EXPOSURE_DURATI ON 10 <SECONDS>

DECLI NATI ON = -14. 2756 <DEGREES>
MASS = 123 <kg>

MASS DENSI TY = 123 <g/cnm*3>
MAP_RESCLUTI ON = 123 <Pl XEL/ DEGREE>
MAP_SCALE = 123 <KM PI XEL>

Note that in the above example, MASS_DENSITY is not expressed in the Sl default unit of
measurement for density (kg/m**3).

PDS recommends (in order of preference) that measurements be expressed using the default Sl
units of measurements, as defined in the following paragraphs. If it isn ot desirable to use the
default SI unit of measurement, then the unit of measurement should be expressed using the S|
nomenclature defined in the following paragraphs. If a unit of measurement is not defined by the
Sl standard, then a unit of measurement ¢ an be derived (e.g., pixels per degree, kilometers per
pixel, etc.).

18.1 Sl Units

The following summary of Sl unit information is extracted from The International System of
Units.

Base units — As the system is currently used, there are seven fundamental Sl units, termed “base

18-2

Chapter 18. Units of Measurement

units’:
QUANTITY NAME OF UNIT SYMBOL
length meter m
mass kilogram kg
time second S
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
[uminous intensity candela cd

Sl units are all written in mixed case; symbols are also mixed case except for those derived from
proper names. No periods are used in any of the symbolsin the international system.

Derived units — In addition to the base units of the system, a host of derived units, which stem
from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters,
and amillisecond is.001 (that i s, 1/1,000) second. The prefixesin current use are as follows:

Sl PREFIXES
Factor Prefix Symbal Factor Prefix Symbal
10**18 exa E 10**-1 deci d
10**15 peta P 10**-2 centi c
10**12 tera T 10**-3 milli m
10**9 giga G 10**-6 micro
10**6 mega M 10**-9 nano n
10**3 kilo k 10**-12 pico p
10**2 hecto h 10**-15 femto f
10**1 deka da 10**-18 atto a

Note that the kilogram (rather than the gram) was selected as the base unit for mass for historical
reasons. Notwithstanding, the gram is the basis for creating mass units by addition of prefixes.

Another class of derived units consists of powers of base units and of base unitsin algebraic

relationships. Some of the more familiar of these are the following:

QUANTITY NAME OF UNIT SYMBOL
area square meter m**2
volume cubic meter m**3
density kilogram per cubic meter kg/m**3
velocity meter per second m/s
angular velocity radian per second rad/s
acceleration meter per second squared m/s**2

Chapter 18. Units of Measurement

18-3

angular acceleration radian per second squared rad/s**2
kinematic viscosity square meter per second m**2/s
dynamic viscosity newton-second per square meter N*s/m**2
[uminance candela per square meter cd/m**2
wave number 1 per meter m** -1
activity (of aradioactive source) 1 per second s¥*-1
Many derived Sl units have names of their own:
QUANTITY NAME OF UNIT SYMBOL EQUIVALENT
frequency hertz Hz s¥*-1
force newton N kg*m/st*2
pressure (mechanical stress) pascal Pa N/m**2
work, energy, quantity of heat joule J N*m
power watt W Js
guantity of electricity potential difference coulomb C A*s
electromotive force volt \% WIA
electrical resistance ohm - VIA
capacitance farad F A*s/V
magnetic flux weber Wb V*s
inductance henry H V*s/A
magnetic flux density tesla T Whb/m**2
[uminous flux lumen Im cd*sr
illuminance [ux Ix Im/m**2
Supplementary units are as follows:
QUANTITY NAME OF UNIT SYMBOL
plane angle radian rad
solid angle steradian s

Use of figureswith S units —In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity associated with any Sl unit. Thus the
guantity 12,000 metersis expressed as “12 km”, not “12,000 m”. So too, 0.003 cubic centi meters
is preferably written “3 mm®, not “0.003 cm®”.

184

SAMPLING _PARAMETER _RESOLUTION, 18-1
SAMPLING_PARAMETER _UNIT, 18-1
Systeme Internationale d'Unites (S1), 18-1
units of measure, 18-1
default units, 18-1
Sl prefixes, 18-2
Sl units, 18-1
supplementary units, 18-3
symbols, 18-1

Chapter 18. Units of Measurement

Chapter 19. Volume Organization and Naming 19-1

Chapter 19. Volume Organization and Naming

The Volume Organization and Naming Standard defines the organization of data sets onto
physical media and the conventions for forming volume names and identifiers. A volume is one
unit of aphysical medium such asa CD, aDVD, or a magnetic tape. Data sets may reside on one
or more volumes and multiple data sets may also be stored on a single volume. Volumes are
grouped into volume sets.

Each volume has a directory structure containing subdirectories and files. Both random access
(CD, DVD) and sequential access (magnetic tape) media are supported. A PDS volumeon a
sequential access medium has a virtual directory structure defined in the VOLUME object
included in the file “VOLDESC.CAT”. Thisvirtual structure may then be used to recre ate the
volume directory structure when the files are moved to a random access medium.

PDS recommends that the entire contents of an archive volume and volume set be based on a
single version of the PDS Standards Reference. Software tools that work with one version of the
Standards may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes, based on the number of data
sets on each volume and the number of volumes required to capture all the data. The directory
organization of the volumes and the required files varies slightly depending on this volume type.
Figures 19.1 through 19.4 depict the various volume directory structure options. The four vo lume
types are described below.

1. Onedata set on one volume. This basic volume organization isillustrated in Figure 19.1.
The required and optional files and directories are detailed in Section 19.3 .

2. One data set on many volumes. In this case the INDEX subdirectory includes both local
indices, for the data on the present volume, and cumulative indices, for the data on all
(preceding) volumes. This layout isillustrated in Figure 19.2.

3. Many data sets on one volume. In this case, additiona file naming conventions are
imposed to prevent collisions; data subdirectories are organized by data set. There are
two variations on this scheme:

a. Onelogical volume—That is, the data sets collected on the physical medium
constitute a single logical volume and would generally be distributed together.
See Figures 19.3a and 19.3b, and Section 19.6 for more information on logical
volumes.

b. Many logical volumes— and The physical medium contains several largely
independent collections of data sets, with each collection organized as though it
were on its own volume. Thisis useful when alarger capacity medium (say,
DVD) is being used to hold several volumes originally produced on a smaller

19-2 Chapter 19. Volume Organization and Naming

capacity medium (e.g., CD-ROM). In this case, directories that are common to
and identical on all volumes need only be reproduced once (e.g., the SOFTWARE
directory in Figure 19.3b). See Figures 19.3a and 19.3b, and Section 19.6 for
more information on logical volumes.

4. Many data sets on many volumes. This organization is most useful when several large
data sets are being produced in parallel over an extended period of time (as with some
Space missions). Sections of each data set appear on each physical volume, requiring
additional naming considerations. See Figure 19.4 for more information.

Note that it is possible to have one or more volumes containing only data accompanied by an
ancillary volume containing the DOCUMENT, CATALOG, GAZETTER, SOFTWARE,
CALIB, and GEOMETRY directories relevant to all the other volumes. When thisis done, the
PDS requires that all files referenced by include-type pointers (see the Pointer Usage chapter in
this document) be present on the data volume. The PDS recommends that ancillary files be
archived on the same volume as the corresponding data wherever possible, to facilitate science
access.

The contents and organization of the dire ctories of all the volume types are described in the
remainder of this chapter.

Chapter 19. Volume Organization and Naming 19-3
VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, ONE VOLUME
ROCT
ARREADME. TXT
ERRATATXT®
VOLDESC CAT
DOCUMENT CATALOG LABEL SOFTWARE oaLle GEOMETRY IMNDEX DATA EXTHAS
DOCINEG.TXT CATINFOTXT | amnFoTyT SOFTINFOTXT CALINFOTET GEOMIMFO.TXT INDMINFO.TXT LABEL FILE1 |
CATALOG.CAT |NCLUEE FILE 1 INDER. LEL OATA FILE 1 EXTRINFO.TXT|
MISSION.CAT INCLUDE FILE 2 INDEX.TAB LABEL FILE 2
INSTHOST.CAT DATAFILE 2
INST.CAT LABELED DATA FILE 1
DATASET.CAT LABELED DATA FILE 2
PERSCM.CAT LABELED DATA FILE 3
REF.CAT BNCLUDE FILE 1+
MCLUDE FILE 2 *
aoINFOL.TET Requeed for each non-dala subdirectony i prasam
* Dplicnal
** Individusal calalog files are projemed, or they may be combined in & single CATALOG.CAT .

Figure19.1 Volume Set Organization Standard - One Data Set, One Volume

19-4 Chapter 19. Volume Organization and Naming

VOLUME SET ORGANIZATION STANDARD
OMNE DATA SET, MANY VOLUMES

AQOT
ARFEADME TXT
ERAATATHT*
VOLDESC.CAT
DOCUMENT GATALOG LABEL SOFTWARE :;m_fa GECMETRY INE)I|E}-! DA'|I'A 1 DATA 2
CATINFOTXT [ARINFOTXT SOFTINFOTHT CALINFOTXT GEOMINEGTHT LASEL FILE 1
DOCINFOTET CATALOG.CAT™ |ye) DE FILE 1 DATA FILE 1
MISSION.CAT N UDE FILE 2 LABEL FILE 2
INSTHOST CAT DATA FILE 2
INST.CAT LABELED DATA FILE 1
DATASET CAT LABELED DATA FILE 2
FERSON.GAT LASELED DATA FILE 3
REF.CAT INCLUDE FILE 1 *
INGLUDE FILE 2 *

i INFOTXHT Reguined lor each non-data subdireciony il présent
" Qplianal
** Individual cetalog fhes are preferred, or they may be comibined in a single CATALOG CAT file.

Figure 19.2 Volume Set Organization Standard - One Data Set, Many Volumes

Chapter 19. Volume Organization and Naming 19-5

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE VOLUME

ROOT
ARREADME. TXT
ERRATA TXT"
VOLDESC CAT
| | | | | | X DATASET 1 EXTRAS
DOCUMENT CATALOG LABEL SDFI"-T-F!E CALIE GEOMETAY INDEX
DOCINFOTXT CATINFOTET | aRinFOTHT SOFTINFOTET CALNFO.TXT GEOMINFCTHT INDXINFOTXT
ﬁgﬁ&f axx TABLE FMT anxCALIB. TAB axxINDEX LEL
. T FMT b GALIE, TAR | axcINDEX TAR
INSTHOST CAT DTABLE " il
;h;f;aﬁglr paelNDEX. TAB
B¥4DS.CAT EXTRINEDTHT
PERSOM.CAT |
REF.CAT DATA 11 DATA 12
LABEL FILE 1
DATA FILE 1
LABEL FILE 2
wodNFO.TXT Required for aach non-dals subdiractory if present DATAFILE 2
* Optional LABELD DATA FILE 1
** |rdividisal catalog fes are prefemed, or they may be combined in a single CATALOG.CAT file LABELED DATA FILE 2
LABELED DATA FILE 3
IMCLUDE FILE 1
INCLUDE FILE 2

Figure 19.3a Volume Set Organization Standard - Many Data Sets, One Volume

19-6 Chapter 19. Volume Organization and Naming

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE PHYSICAL VOLUME,

MANY LOGICAL VOLUMES
ROOT

ARREADME. TXT

ERAATA.THT

VOLDESC CAT

| I
DOATASET 1 ™ CATASETn* SOFTWARE ***
| |
SOFTINFO.TXT
AAREADME TXT AMREADME TXT ETC
WOLOESC CAT VOLDESC CAT
ERRATA TXT" EARATATXET*
| CATALCG LABEL SOFTWARE GECMETRY
DATA
DOCUMENT CALIR
INDEX EXTRAS
I I | | | |
DOCUMENT LABEL CALIE INpEX EXTRAS
CATALOG SOFTWARE GECMETHY DATA
* Oiplicnal

** Logical volume; direchory structure dentical fo Figure 151, ONE DATA SET, OKE VOLUME
*** Comman ta all lngical volumes

Figure 19.3b Volume Set Organization Standard - Many Data Sets, One Physical Volume,
Many Logical Volumes

Chapter 19. Volume Organization and Naming 19-7

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, MANY VOLUMES

ROOT

AAREADME TXT

ERRATATXT*
WOLDESC.CAT
| | | | | | DATASET
OOCUMENT GATALOG LABE] SOFTWARE CALIE GECMETRY INDEX ¢ el
DOCINFO.TXT CATINFOUTET LABINFO.TET SOFTINFOTXT - CALINFOTHT GEOMINFOTAT INDEXINFO.TXT
G-\TJ'LLDG.C&T' axxTABLE FMTH axxCALIB.TAB amdNDEX.LBL
ﬁ"f's'ﬁm CAT puTABLE FIITH DxCALIB.TAB | axxiNDEX. TAB
IH..-,T\-IELE CAT axpCMIDX.LEL
INS;?;;LT I axxCMIDX.TAS
xS, BxxNDEN.LBL EXTRINEO,TXT
baxDE.CAT bxxiNDEX. TAB
PERSOM.CAT BxxCRIOX LEL |
REF.GAT beaCMIDX TAE DATA 11 DATA 2
LABEL FRLE 1
DATA FILE 1
LABEL FALE 2
woniNFQLTXT Required for each nan-data eubdiractony i prasent MIAFILEE
* Optioral LABELD DATA FILE 1
** Individual catalog files are preferrad, or thay may ba comiinad in a single CATALDG AT fla LABELED DATA FILE 2
LABELED DATA FILE 3
INCLLDE FILE 1

INCLUDE FILE 2

Figure 19.4 Volume Set Organization Standard - Many Data Sets, Many Volumes

19.2 Volume Organization Guidelines

The PDS recommends that directory structures be simple, path names short, and directory and
file names constructed in alogical manner. When determining the number of files to be stored in
each subdirectory, data preparers should keep in mind that most users rely on visual inspection to
glean the contents of a directory or confirm that adisk isintact. Not e that some older operating
systems will “crash” when encountering a directory containing more than 128 files. Note also
that device load time can be directly dependent on the number of filesin a directory, making
large directories inconvenient for large numbers of users. Thetypical practical limit for these
purposesis on the order of 100 files per directory. As afurther convenience to users, PDS
recommends that empty subdirectories be omitted entirely.

19.3 Description of Directory Contents and Organization

Theroot directory isthe top-level directory of avolume. The following sections describe the
contents of the root directory, followed by the contents of the required subdirectories (in
a phabetical order), and finally the contents of the optional directories (in alphabetical order).

19-8 Chapter 19. Volume Organization and Naming

19.3.1 ROOT Directory Files
AAREADME.TXT Required

Thisfile contains an overview of the contents and organization of the associated volume, general
instructions for its use, and contact information. The name has been chosen so that it will be
listed first in an alphabetical directory listing. See Appendix D for an example of an
AAREADME.TXT file.

VOLDESC.CAT Required

Thisfile contains the VOLUME object, which gives a high-level description of the contents of
the volume.

ERRATA.TXT Optional

Thisfile identifies and describes errors and/or anomalies found in the current volume, and
possibly in previous volumes of a set. When a volume contains known errors they must be
documented in thisfile.

VOLDESC.SFD Obsolete

Thisfileisidentified here only for backward compatibility with previous versions of the PDS
standards. It isnot to be used in current archive products.

Thisfile contains the SFDU reference object structure that aggregates the separate file contents
of the volume into an SFDU. The reference object itself is expressed in ODL. Thisfile should
only beincluded if the data products are packaged as SFDUs. (Notethe “.SFD” file extension is
areserved file extension in the CCSDS SFDU standard indicating the file contains a valid
SFDU.)

19.3.2 Required Subdirectories

19.3.2.1 CATALOG Subdirectory

This subdirectory contains the catal og object files (for the mission, instrument, data sets, etc.) for
the entire volume. When several logical volumes are present on a single physical volume, each
logical volume should have its own CATALOG subdirectory.

CATINFO.TXT Required
Thisfileidentifies and describes the function of each file in the CATALOG subdirectory.

CATALOG.CAT Optional

Chapter 19. Volume Organization and Naming 19-9

In most cases, the individual catalog objects are in separate files, one for each object. On some
older archive volumes, however, al catalog objects were collected into asingle file called
CATALOG.CAT.

PDS Methodology for Supplying Catalog Objects

The preferred method for supplying catalog objects is as separate files for each catalog object,
since this facilitates the review, verification and archiving process. | n Figure 19.5, for example,
the files axxxxxDS.CAT and bxxxxxDS.CAT represent two separate files each containing single
data set catalog objects (descriptive information about the data set) for datasetsaand b
respectively. See the File Specification and Naming chapter in this document for the file naming
rules; see Section A.5, CATALOG, for the required contents of the catal og object, and see
Appendix B for information on each of the referenced catal og objects.

When catalog objects are organized in separate files or sets of files, pointer expressions shall be
constructed according to the following table. Under "File Name", the first line shows the file
name to be used if asingle catalog file is present on the volume for the particular type of catalog
object named. The second shows the syntax and file name convention to be followed if multiple
catalog files are present for the named object.

Catalog Pointer Name File Name

"DATA_SET_CATALOG = "DATASET.CAT"

= {"xxxxxxDS.CAT","yyyyyyDS.CAT"}
ADATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"

= {"oxxDSC.CAT","yyyyyDSC.CAT"}
"DATA_SET_MAP_PROJECTION_CATALOG = "DSMAP.CAT"

= {"xxxDSMAP.CAT","yyyDSMAP.CAT"}
AINSTRUMENT_CATALOG = "INST.CAT"

= {"xxxxINST.CAT","yyyyINST.CAT"}
AINSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"

= {"xxxxHOST.CAT","yyyyHOST.CAT"}
AMISSION_CATALOG = "MISSION.CAT"

= {"xXxxxxMSN.CAT","yyyyyMSN.CAT"}
APERSONNEL_CATALOG = "PERSON.CAT"

= {"xxxxPERS.CAT,"yyyyPERS.CAT"}
"REFERENCE_CATALOG = "REF.CAT"

= {"oxXXREF.CAT","yyyyyREF.CAT"}
ASOFTWARE_CATALOG = "SOFTWARE.CAT"

= {"xxxSW.CAT", "yyySW.CAT"}
"TARGET_CATALOG = "TARGET.CAT"

{"XxXTGT.CAT", "yyyTGT.CAT"}

19.3.2.2 Data Subdirectory

The DATA subdirectory may be used to unclutter the root directory of a volume by providing a
single entry point to multiple data subdirectories. These directories contain the data product files.
The directories are organized and named according to the standards in Chapter 8, Directory
Types and Naming, in this document. Subdirectories may be nested up to eight level s deep on a
physical volume.

19-10 Chapter 19. Volume Organization and Naming

Data Files

A datafile contains one or more data objects, which is a grouping of data resulting from a
scientific observation (such as an image or table) and representing the measured instrument
parameters.

Label Files

A labd file contains adetached PDS label that identifies, describes, and defines the structure of
the data objects. The associated data objects are contained in an accompanying datafile. The
label file must have the same base name as the associated data file, with an extension of “.LBL".

Labeled Data Files
PDS labels may be attached directly to the data they describe. In this case the PDS label comes
first and the data begin immediately following the end of the label. When attached labels are

used, no “.LBL" fileswill be present in the data directories. See the Data Products and Data
Product Labels chapters in this manual for details.

19.3.2.3 INDEX Subdirectory

This directory contains the indices for all data products on the volume.

Note: If the physical volume is organized as several logical volumes (case 3b of Section 19-1),
there will generally not be an INDEX subdirectory at the root of the physical volume. Instead
there will beindividual INDEX subdirectories at the root of each logical volume. See Section
A.20, INDEX_TABLE, for more information.

INDXINFO.TXT Required

This file identi fies and describes the function of each file in the INDEX subdirectory. This
description should include at least:

1) A description of the structure and contents of each index tablein this subdirectory

2) Usage notes
For an example of the INDXINFO.TXT file, see Appendix D, Section D.2.
INDEX.LBL Required
Thisisthe PDS labd for the volume index file, INDEX.TAB. The INDEX_TABLE specific

object should be used to identify and describe the columns of the index table. See Appendix A for
an example. Although INDEX.LBL isthe preferred name for thisfile, the name axxiINDEX.LBL

Chapter 19. Volume Organization and Naming 19-11

may also be used (with axx replaced by an appropriate mnemonic).

Note: The PDS recommends detached |abdls for index tables. If an attached labdl is used, thisfile
isomitted.

INDEX.TAB Required

Thisfile contains the volume index in tabular format (i.e., the INDEX_TABLE specific object is
used to identify and describe the data stored on an archive v olume). Only data product label files
(i.e., not the datafiles) are included in an index table. In rare cases, however, ancillary files are
also included. Although INDEX.TAB isthe preferred name for this file, the name
axxINDEX.TAB may also be used, with axx replaced by an appropriate mnemonic.

Note that the axx prefix is neither required nor recommended. Data producers may use a prefix to
distinguish two or more files by data set, instrument, or other criteria. The data producer should
replace the generic prefixes shown here with a suitable mnemonic.

The following files are recommended for multi-volume sets:
CUMINDEX.LBL Optional

Thisfile contains the cumulative volume set index in tabular format (i.e., the INDEX_TABLE
specific object is used to identify and describe the data stored on each archive volume). Only
data product label files (i.e., not the data files) are included in an index table. In rare cases,
however, ancillary files may be included. Although CUMINDEX.LBL isthe preferred name for
thisfile, the name axxCMIDX.LBL may also be used, with axx replaced by an appropriate
mnemonic.

PDS recommends the use of detached |abdls for index tables. If an attached |abdl is used, thisfile
isomitted.

CUMINDEX.TAB Optional

This file contains the cumulative volume set index in atabular format. Normally only datafiles
areincluded in a cumulative index table. In some cases, however, ancillary files may be
included. Although CUMINDEX .TAB isthe preferred name for thisfile, the name
axxCMIDX.TAB may also be used, with axx replaced by an appropriate mnemonic.

19.3.3 Optional Subdirectories

19331 CALIBration Subdirectory

This directory contains the calibration files used in the processing of the raw data or needed to
use the data products on the volume. Note that “CALIB” is only a recommended name - a
different directory name may be used if appropriate.

19-12 Chapter 19. Volume Organization and Naming

CALINFO.TXT Required
Thisfileidentifies and describes the function of each filein the CALIB subdirectory.
Calibration Files Required

In Figures 19.3 and 19.5, thefiles axxCALIB.TAB and bxxCALIB.TAB represent sample files.
The axx and bxx prefixes indicate that the calibration files for different data sets (a and b) may be
combined in the same CALIB subdirectory.

Note that the axx and bxx prefixes in the sample names are neither requi red nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other
criteria). Also, inthis casethe “CALIB” file nameis not required. It is used in the figures to
differentiate calibration files from obsavational data files. The data producer should replace the
generic file names shown here by suitably mnemonic names.

19.3.3.2 DOCUMENT Subdirectory

This directory contains the files that provide documentation and supplementary and anc illary
information to assist in understanding and using the data products on the volume. The
documentation may describe the mission, spacecraft, instrument, and data set(s). It may include
references to science papers published elsewhere as well an entire papers republished on the
volume. See Section A.12, DOCUMENT, for more information.

DOCINFO.TXT Required
Thisfileidentifies and describes the function of each file in the DOCUMENT subdirectory.
VOLINFO.TXT Optional

This file describes the attributes and contents of the volume. Thisfile is sometimes included in
addition to the catalog files in the CATALOG subdirectory to provide the same information in an
alternate format.

Note: Inrare cases, the data engineer may alow the data preparer to place all the corresponding
catalog object descriptions in the VOLINFO.TXT file of the DOCUMENT subdirectory in lieu
of separate filesin the CATALOG subdirectory. Regardless of which method is used, the
descriptions themsel ves must always be supplied.

19.3.3.3 EXTRAS Subdirectory

The EXTRAS directory isthe designated area for housing additional elements provided by data
preparers beyond the scope of the PDS archive requirements. Examples include HTML -based
disk navigators, educational and public interest aids, and other useful but nonessential items.
The PDS places no restrictions on the contents and organization of this subdirectory other than

Chapter 19. Volume Organization and Naming 19-13

conformance to 1SO-9660/UDF standards.
EXTRINFO.TXT Required

This file identifies and describes the function of each file in the EXTRAS subdirectory. This
description should include at least the following:

1. A description of the structure and contents of each file in the subdirectory
2. Usage notes

19.3.34 GAZETTER Subdirectory

This directory contains detailed information about al the named features on atarget body (i.e.,
the gazetteer information) associated with the data sets on the volumes. “Named features’ are
those the International Astronomical Union (IAU) has named and approved. See Section A.15,
GAZETTER_TABLE, for more information.

GAZINFO.TXT Required

Thisfileidentifies and describes the function of each filein the GAZETTER subdirectory.

19-14 Chapter 19. Volume Organization and Naming

GAZETTER.TXT Required

Thisfile contains text describing the structure and contents of the gazetteer tablein
GAZETTER.TAB.

GAZETTER.LBL Required
Thisfileisthe PDS label containing aformal description of the structure of the gazetteer table.
GAZETTER.TAB Required

Thisfile contains the gazetteer table.

19.3.35 GEOMETRY Subdirectory

This directory contains the files (e.g., SEDR file, SPICE kernels, etc.) needed to describe the
observation geometry for the data. Note that “GEOMETRY” is only arecommended directory
name, another appropriate name may be used.

GEOMINFO.TXT Required

Thisfile identifies and describes the function of each filein the GEOMETRY subdirectory.

19.3.3.6 LABEL Subdirectory

This directory contains additional PDS labels and include files that were not packaged with the
data products or in the data subdirectories. When multiple logical volumes reside on asingle
physical volume, the LABEL subdirectories must appear below the logical volume root
directories. Thisis because the rules governing pointer resolution preclude a search across
logical volumes.

LABINFO.TXT Required
Thisfileidentifies and describes the function of each filein the LABEL subdirectory.
Include Files Required

Include files are files referenced by a pointer in aPDS label. Typically they contain additional
metadata or descriptive information. Only files of type LBL, TXT, or FMT (“format”) may be
included in the LABEL subdirectory. In Figures 19.1-5, the filesaxxi NCLUDE FILE1,
bxxINCLUDE FILE1 and INCLUDE FILE1 represent sample files of the above types. The axx
and bxx prefixes indicate that the include files for different data sets (a and b) may be combined
in the same LABEL subdirectory.

Note that the axx and bxx prefixes in the sample names are neither required nor recommended.
Data producers may use them to distinguish two or more files (by data set, instrument, or other

Chapter 19. Volume Organization and Naming 19-15

criteria). The data producer should replace the generic prefixes shown here by a suitable
mnemonic.

19.3.3.7 SOFTWARE Subdirectory

This directory contains the software libraries, utilities, or application programs supplied for
accessing or processing the data. It may also include descriptions of processing agorithms. Only
public domain software may be included on PDS archive volumes.

Two subdirectory structures are available for organizing the SOFTWARE directory: platform-
based and application-based. Platform-based is the recommended method for general archives
and is described below. For an example of application-based organization see the example for
SOFTINFO.TXT in Appendix D of this document, and the NAIF directory structurein Appendix
E. See Section 11.3 for information about packaging software for inclusion in an archive
product.

SOFTINFO.TXT Required
Thisfile identifies and describes the function of each file in the SOFTWARE subdirectory.
SRC Subdirectory Optional

There can be aglobal SRC directory under the SOFTWARE directory if there is source code
applicableto all platforms. For example, application-programming languages such as IDL are
relatively platform independent and would be placed in a global SRC directory. Note that in the
example below, there is both a global source directory as well as source directories at the lower
levels.

DOC Subdirectory Optional
This directory contains documentation for the software in the parallel SRC directory.

L1B Subdirectory Optional
This directory contains libraries applicable to all platforms.

Hardwar e Platform and Operating System/Environment Subdirectories Optional

If only global source cade is being provided on the volume, no further organization is required. If
platform- or environment - specific software is being provided, the structure in Figure 19.6
should be followed. Specifically:

1. The hardware platform and the operating system/environ ment must be explicitly stated.
If more than one operating system/environment (OS/Env) is supported for asingle
hardware platform, each should have its own subdirectory under the hardware directory.
If thereis only one, then that subdirectory can be promoted to the hardware directory
level (via naming conventions). In Figure 19.6, several environments are supported for

19-16 Chapter 19. Volume Organization and Naming

platform HW1, but only one for HW2 — thus the difference in subdirectory structures.
2. Thenext directory level contains BIN, SRC, DOC, L 1B and OBJ. If any of these are not
applicable, it should be l€eft out (i.e., empty directories should be omitted).

3. Following are examples of subdirectory names for both multiple and single OSEnv per
platform. (Thislist is provided for illustration only. It is not meant to be exhaustive.)

Multiple Single
PC
DOS PCDOS
WIN PCWIN
WINNT PCWINNT
02 PCOS2
MAC
SYs7 MACSYS7
AUX MACAUX
SUN
SUNOS SUNOS
SOLAR SUNSOLAR
VAX
VMS VAXVMS
ULTRX VAXULTRX
S ¢l
IRX4 SGIIRX4

IRXS5 SGIIRX5

Chapter 19. Volume Organization and Naming 19-17

SOFTWARE

SOFTINFO.TXT

<HW1> <HW?2> <SRC>* <DOC>*
| |
| | | []
<0sl> <o0sZ2> <0s3> BIN SRC DOC LIB OBJ

BIN SRC DOC LIB OBJ

* NOTE: INFO.TXT files under SOFTWARE subdirectories are optiona (e.g., PCINFO.TXT,
MACINFO.TXT, VAXINFO.TXT, SUNINFO.TXT, €tc.).

Figure 19.6 — Platform-based SOF TWARE Subdirectory Structure

19.4 Volume Naming

Volume names must be no more than 60 characters in length and in upper case. They should
describe the contents of the volume in terms that a human user can understand. In most cases the
volume name is more specific than the volume set name. For example, the volume name for the
first volume in the VOYAGER IMAGES OF URANUS volume set is“VOLUME 1.
COMPRESSED IMAGES 24476.54 - 26439.58.”

19.4.1 VolumelD

Many types of media and the machines that read them place a limit on the length of the volume
ID. Therefore, athough the complete volume set ID should be placed on the outside label of the
volume, a shorter version is actually used when the volume is recorded. PDS has adopted a limit
of 12 characters for these terse volume identifiers. This volume ID consists of the last two
components of the volume set ID, with the “X” wildcard values replaced by the sequence
number associated with the particular volume (see the Volume Set ID Standard below). ThisID
must always be unique for PDS data volumes. The volume ID must be in upper case.

Examples:
VG_0002 Volume 2 of the Voyager set
MG_0001 The first volume of the Magellan set

VGRS 0001 A potential Voyager Radio Science collection

19-18 Chapter 19. Volume Organization and Naming

If avolumeis redone because of errorsin theinitial production the volume ID should remain the
same and the VOLUME_VERSION_ID incremented. This parameter is contained in the
VOLDESC.CAT file on the volume. The version ID should also be placed on the external
volume label as“ Verson n” where n indicates the revision number. A revision number greater
than one indicates that the origina volume should be replaced with the new version.

19.5 Volume Set Naming

The volume set name provides the full, formal name of a group of data volumes containing one
or acollection of related data sets. Volume set names may be at most 60 characters in length and
must be in upper case. Volume sets are normally considered a single orderab e entity. For
example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: THE MOSAIC IMAGE DATA RECORD
MAGELLAN: THE ALTIMETRY AND RADIOMETRY DATA RECORD
MAGELLAN: THE GLOBAL ALTIMETRY AND RADIOMETRY DATA RECORD

PRE-MAGELLAN RADAR AND GRAVITY DATA SET COLLECTION

In certain cases, the volume set name can be the same as the volume name, e.g., when the
volume set consists of only one volume.

195.1 VolumeSet ID

A volume set is a series of archive volumes that are closely related. In general, the volumes of a
set will be distributed and used together. Each volume within the set must haveaVOLUME_ID
that is unigue across the PDS archive. The volume set isidentified by aVOLUME_SET_ID of
up to 60 characters incorporating the range of constituent VOLUME _IDs. VOLUME_SET IDs
must be in upper case, and are composed by concatenating the following fields, separated by
underscores, using abbreviations if necessary:

The country of origin (abbreviated)

The government branch

The discipline within the branch that is producing the volumes

A campaign, mission or spacecraft identifier (2 characters) followed by an optional
2-character instrument or product identifier

A 4-digit sequence identifier: The first digit(s) represent the vol ume set; the
remaining digits contain “ X", representing the range of volumes in the set. Up to
four “X” characters may be used.

pPOODNE

o

Example

USA NASA PDS GO _10XX could bethe volume set ID for the Galileo EDR volume set, since
there are less than 100 volumes (since the XX placeholder accommodates the range 01 - 99
only). Volume IDs for volumes in the set would then be GO_1001, GO_1002, etc.

Chapter 19. Volume Organization and Naming 19-19

Note: Because of the uniqueness constraint, data preparers should consult with their PDS data
engineer when it comes time to formulate new VOLUME_ID and VOLUME_SET _ID values.

Volume Set IDs Prior to PDS Version 3.2

Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the “ X”
wildcards. Instead, the last digits represented the volume. For example, on Magellan, a volume
set ID “USA_NASA _JPL_MG_0001" was usedonly for the volume with the volume ID
“MG_0001". Subsequent volumes in the same set had volume set I1Ds that differed in the final
field. When a set of volumes was to be distributed as one logical unit, the volume set ID
included the range of volume IDs.

Example

USA NASA PDS VG 0001 _TO_VG_0003 for the three volumes that camprise the Voyager
Uranus volume set.

19.6 Logical Volume Naming

Logical volumes retain the volume and volume set naming used at the physical volume level. For
further information, see the “VVol ume Object” in Appendix A of this document.

19.7 Exceptionsto This Standard

In rare cases volume IDs are subject to restrictions imposed by specific hardware or software
environments. Also, volumes made in the past may have IDst hat do not meet this standard and
there may be compelling reasons for keeping the same volume ID when making a new copy of
the data. All new data sets, however, must adhere to this standard wherever possible.

19-20 Chapter 19. Volume Organization and Naming

AAREADME.TXT oottt sttt ctestesteseeste e sseesaestees sabesseesessesseesessessenens seseensessessens 19-8
ANCHTAIY FHES ... s et e et e s sae saeesaeesneeeneesneeaneas 19-2
ANCHTANY VOIUME ... e ettt e e reresseeanenennes 19-2
uél#
CALIB SUDAITECIOIY......ccueiiiiiiiieiiieiieiiies cerieesieesee et esieesiee s seseesseesseesseesseesseesseesee saeessessses 19-12
(o 1] o) = (0] 0 N 1 =S USSR 19-12
CaliDration SUDAITECIONY.......cocueiiieiieieeiiieiie ettt eesbeesseesaeeseeeseeesbeensees eesseens 19-12
(@ I V1 2 10 SR 19-12
(o 1= oo o] o] = ot B 1 == TSRS UURRRRRRIN 19-8
catal og objects
010 YT (o = o] o] RS RR 19-9
CATALOG SUDAITECLONY.....ccveeiieieeieeieeiiees certeesieesieesseesteessessseens csseessessseessesssesssesnses 19-8, 19-12
(@ N I @€ O N SRR 19-9
(@ NN I A1 @ 2 9 Gl SRR 19-8
(o= 1 [0To [o0 1 o 11 PP 19-9
CUMINDEX .LBL ..eetiiietieeesieeeeiie et siee st st sies seesseesseesseessessseesseassees sesseesssesnees 19-11
CUMINDEX.TAB ...cotiiiieitieiteesieerieeiee steesteesieesteesieesseesseesaes eesseessessseessesseeseessens esssessesnees 19-11
CUMUIBEIVE TNOEX ...ttt eeiee ettt £esbeesseesseesseesseesbeesseans seseessesssessses 19-11
%
datafiles
(60011 01T TR PU PP PPPPPPPRRT 19-10
DATA SUDAITECLONYeeueeeiieieeieeieeiees certeesieesteeseee e e sbeestees ssbeesseesseesseesseesseesseesse saeessesssees 19-10
19-7

D1 (O 1\ © 2 15 SR 19-12
DOCUMENT SUDAITECIONY ..ot ettt e esveesseesseenseeneeens 19-12,19-13

19-8

19-12

19-8

19-12

19-14

19-10, 19-13

19-2 Chapter 19. Volume Organization and Naming

19-15
19-14
19-13
19-14
19-12
%
ERRA T A T XT ettt cerieesieesee et e st e saee s —aseesseesseesseesseesseesseesse saeessessneessenssenns 19-8
EXTRAS SUDGITECLONYveeuteeieeieeie et eeieesieesie et e ste et te s ceseesseesesnsesnsesnsesseans saseenees 19-13
[y I N T 15 SR 19-13
{%ﬁ
QAZELEEY TADI ...t e e eenreesre e e e 19-14
GAZETTER SUDAITECLOIYc.eeiiieeiiii et siie et et sie et eesseesneesneesnessneesneesnens seas 19-13
GAZETTER.LBL ...ttt ettt teestesstessseseesnsesnseanees teensessesnsens 19-14
GAZETTER.TAB ...ttt ettt ettt teesteeatesteatesnteanteanees teesesnsessens 19-14
GAZETTER. TXT ittt eie ettt eitesee st e s eeste st e saes tessseentesnsesnsesntesnseanees seesesnsessens 19-14
(€7 A | N O 15 G [SRR 19-13
GEOMETRY SUDAITECIONYeiiiieiieiieiieiieiie ettt ceesseesseesseesaeesreesneensees os 19-14
GEOMINFO.TXT .eiitiiiieitierieesieeriee e steesieesseesseesieesseesseesses eesseessessseessessseeseessens eeneesssesnees 19-14
uélé
INCIUAE FITES ... s et eee st e st e sreeeae satesneesnsesneesneenneas 19-14
INDEX SUDGITECIONY ...ttt rie cteesiee e stee st stessbeesaes seesaeesseessessseesseesseessees sesseessenns 19-10
INDEX .LBL ..ttt rie st siee e siee s et e st e saes seesseesseesseessessaeesseassees sesseesssesnsesseaneens 19-11
INDEX . TAB et ettt st e eesaeesseesseesseesaeesseessees £esseesnsesneesnseanenns 19-11
INDEX _TABLE ...t et eesaeessee st e sstesaeesseesnees £eenteensesneennes 19-11
INDXINFO. TXT ettt teestesee et et estestes £eesteeseeseeteenseebeansees £esseessesssennes 19-10
uélé
label files
(60011 01T TP U PP PPPPP PP 19-10
[N = I U oo T <ok (o /TR 19-14
N = V1 A 15 SRR 19-14
logical volumes
multipl e logical volumES (AEfiNITION)cocviieriiii it e e 19-1
7= 01 0 PRSPPI 19-19

single logical volume (defiNition)coieeiiiiiiiieis e reeee e 19-1

Chapter 19. Volume Organization and Naming 19-3

physical media

(01072 011z 1[0 [T 19-1
pointers
[or= =1 oo SRS 19-9
%
ROOT DITECLOIY FIlIES ...ttt ettt sie sateestesseesseesaeesseesaeeanes eesneens 19-8
uélé
1 @ I 1\ 2 10 G TR 19-15
SOFTWARE SUBAITECIONYeeeiiieiiie e cieeeie et eiteeesiee e e stee e siee e aeesaseessneesneesseesseeaane oa 19-15
H%I#
target
NAMEA FEALUINESeo et et eeesteeste e s reesteesreeans sereeenseessees 19-13

19-16

V OLDESC.CAT ettt teete ettt et teerreebes feesbeesbeesseesbeesseesseessees £esseenns 19-8, 19-18
V OLDESC.SFD ...ttt teeteesteeste et e e steesteentes feebeesseesseesbeesseanbeasbees £esseesseessenssenns 19-8
VOLINFO. TXT ittt sieeie steesteesteesieeseeesbeesseesbes seesseesseessesssessseessesnsees sesseens 19-12, 19-13
volume
ANCHTANY VOIUMES ...t et —esaee e e sseesreesaeesbeesree s sareesseesseans 19-2
(01 11 0o o [R UPRPR 19-1
5 1 USSR 19-17
LS o= o 1T 0] USRS 19-19
[ogical VOIUME NAIMINGooueiiiiiiiiie et ettt see sbeesseesseesseesseesseesreenaes seens 19-19
PMAIMIES. ...ttt eitee e ettt e e etee +aabeeeeaee e e s asbe e e s nbeeeabe £eesbeeeabeee e e beeeeaReeeaan Heeeaneeeeanreeeaanreeeaanreas 19-17
VOLUME ...ttt ettt sttt s —abeesbeesbeesbeesseesbeesbeesse Sheesseessesssessseessenssenns 19-8
VOIUME INAEX ...ttt eis teertee ettt saeesbes feesbeesseesseesbeesseesbeesrees £essessseessesssensses 19-11
volume organi zation aNd NAMINGcocueiirririieriris creeeeeseesee e sesseeses seeseesseeseessesseessees 19-1
volume set
(01 11 0o o [TR TRUPRRR 19-1
5 1 USSR 19-18
PMAIMIES. ... eeeteeeeitee e et e e abee +aabeeeease e e e asbe e e snbeeeabe £eeseeeesbeeeeabbeeeaReeeaan Heeeaneeeeanreeeaanneeeaanreas 19-18

organization

194 Chapter 19. Volume Organization and Naming

many data Sets, Many VOIUIMEScccoiiriieriieiieiis sreesieesieesieeseeeseessseesses seessesssesnes 19-2, 19-7
many data sets, one PhySiCal VOIUME..........ccooiiiiiiiiiiient v see sreesieesneas 19-6
Many data SELS, ONE VOIUMIEcouiiiieeiieieeiieeiies eeieeteesieesteesteesseestees eesseesseesseesseessesssenns 19-1
one data Set, MaNY VOIUMEScocuiiieriieie s teeieeiesstessaesstessestes seenseesseessesees 19-1, 194
one data Set, ONE VOIUMEoueiiiiiiiieierie e erbeesbee e e naeeneeens 19-1, 19-3
(= o0001007= 010 = 1 o 1SR 19-7
14 01 TP PUPPTUPPRPT 19-1
volume set
organization
many data SEtS, ONE VOIUMIE.........coiiiiiiirieiie e eeree e seeseesaeesneens 19-5
VOLUME _ID ...ttt eeiie e st eee et te e sne stessesseessessesseessesseeneens sseensessessennsnssens 19-18
VOLUME_SET _ID .ttt eetiesiesiesee sttt sseesaesne tessessesseessessesssessesseans stesseensenes 19-18
VOLUME_VERSION _ID ...oiiiiieiiiitieieiiiseees esteeiesiesseeae e ssessseses eessessesssessessessesssessenne see 19-18
19-17
19-17
19-18
19-18
19-1
19-1

VOIUMES, [OQICALeeiiiiieiiieieeieet ettt teesteebeesbeesbeenbeenbeetes feebeenseenseenees 19-10

Chapter 20. Zip Compression 20-1

Chapter 20. Zip Compression

The PDS standards support two different approaches to data compression:

1. Inone case, adata object contains numbers that have been encoded using one of several
supported methods (e.g., “Huffman first difference”). In this approach, the label describes
the compressed data and the ENCODING_TY PE keyword indicates how the data object
is to be decompressed by the user. PDS standards support this approach to compression
for IMAGE objectsonly. For more information on compression of individual IMAGE
objects, see Section A.19.

2. Inthe alternative approach, a standard compression method called “Zip” isused. Inthis
case, an entire data file is compressed rather than a particular data object. The user is
expected to apply an “Unzip” utility to decompress the file, and the label then describes
the decompressed data directly.

This chapter describes PDS standards for archiving data using Zip compression. In general, the
archiving of datain a compressed format should be used sparingly. Although compression
reduces the number of physical volumes, it makes the data more difficult for users to interpret.
PDS recommends that data compression be used only in limited situations, such as to compress
very large and infrequently used data, or to archive processed data where the source product is
readily available in a non-compressed PDS archive.

20.1 Zip Software

The Zip method was chosen because the algorithm and supporting software for all major
platforms are available without charge to the general user community. The Info-Zip Consortium
and Info-Zip working group, for example, provide information and software at these URLS:

http://www.info-zip.or g/pub/infozip
http://www.fr eesoftwar e.com/pub/infozip

This same information is available on line from PDS at:

http://pds.jpl.nasa.gov

20.2 Zip FileLabels

When archiving datain Zip format, two files need to be considered: (1) the zip fileitself, and (2)
the data file produced by decompressing the zip file. PDS strongly recommends that these two
files have the same name but different extensions: “.ZIP” for the zip file and a more descriptive
extension (e.g., “.DAT” or “.IMG”") for the unzipped file. The“.ZIP" file extension is reserved
exclusively for zip-compressed files within the PDS.

20-2 Chapter 20. Zip Compression

PDS does not recommend the practice of compressing multiple datafilesinto asingle zip file,
unless those files reside in the same directory and have the same name, but different extensions.
For example, if file* ABC.IMG” contains an image and file“ ABC.TAB” contains a table of
additional information relevant to that image, then both files can be archived in thefile
“ABC.ZIP’. Thiswill minimize the potential confusion for a user who may not be able to locate
adesired file because it is hidden inside a zip file with a different name.

Like all PDS datafiles, both the zipped and the unzipped datafilesr equire labels. Both files
must be described by a single, detached PDS label file using the combined-detached label
approach (see Section 5.2.2). Attached labels are not permitted for Zip-compressed data,
because the user must be able to examine the label before deciding whether or not to decompress
thefile. In acombined-detached label, each individual fileis described as a FILE object. Hereis
the general framework:

PDS_VERSI ON_I D = PDS3
DATA SET_ID = ...
PRODUCT_I D = ...
(other paraneters relevant to both Zi pped and Unzipped fil es)
OBJECT = COWPRESSED FI LE
(paraneters describing the conpressed file)
END_OBJECT = COWPRESSED FI LE
OBJECT = UNCOWPRESSED FI LE
(paraneters describing the first unconpressed file)
END_OBJECT = UNCOWPRESSED FI LE
OBJECT = UNCOWPRESSED FI LE
(paraneters describing a second unconpressed file, if present)
END_OBJECT = UNCOWPRESSED FI LE
END

Thefirst FILE object, the COMPRESSED_FILE, refersto the zipped file; additional FILE
objects, called UNCOMPRESSED_FILEs, refer to the decompressed data file(s) that the user
will obtain by unzipping the first.

Thezip fileis described viaa*® minimal labd” (see Section 5.2.3). The following keywords are
required:

FI LE_NAME = nane of the zipfile
RECORD _TYPE = UNDEFI NED

ENCODI NG_TYPE = ZIP

| NTERCHANGE _FORVAT = Bl NARY

a list of the nanes of all the files archived
inthe zipfile

approxi mate total nunber of bytes in the data
files

a brief description of the zipfile format

UNCOVPRESSED _FI LE_NAME

REQUI RED_STORAGE_BYTES

DESCRI PTI ON

Chapter 20. Zip Compression 20-3

Typically, the DESCRIPTION is given as a pointer to afile called “ZIPINFO.TXT” found in the
DOCUMENT directory on the same volume.

The subsequent UNCOMPRESSED _FILE object(s) contain complete descriptions of the data
files obtained by unzipping the zip file.

20.3 Packaging Zip Archiveson Volumes

A volume containing zip files with combined-detached |abel's as presented above conforms to all
established PDS standards provided both the zip file and its constituent data files are archived.
The unique feature of a Zip-compressed PDS archive volume is that only the zip files appear; the
UNCOMPRESSED_FILE objects described by the labels are not present on the volume, but can
be obtained by unzipping the zip files provided.

In the interests of long-term archiving, a PDS archive zip file must include all th e support files
required to completely reconstitute the labeled data files. Specifically, the zipped archive must
include not only the data files, but also the labdl file(s) for the uncompressed data. Ideally, any
FMT files referenced by "STRUCTURE keywords in the labels should also be included in the
zipfile.

Note: These additional .LBL and .FMT files do not need to be described by
UNCOMPRESSED_FILE objectsin the label, because PDS label and format files never require
labels. Furthermore, the sizes of these files do not need to be included in the value of the
REQUIRED_STORAGE_BY TESkeyword. However, the names of these files do need to be
included in the list of UNCOMPRESSED FILE NAME values.

20.4 Labe Example
The following is an example of a PDS label for a Zip-compressed datafile.

PDS_VERSI ON_| D PDS3

DATA SET_ID = "HST- S- WFPC2- 4- RPX- V1. 0"
SOURCE_FI LE_NAME = "U20N0101T. SHF"
PRODUCT_TYPE = OBSERVATI ON_HEADER

PRODUCT_CREATI ON_TI ME 1998-01-31T12: 00: 00

CBJECT = COWPRESSED FI LE
FI LE_NAME = "0101_SHF. Z| P"
RECORD_TYPE = UNDEFI NED
ENCODI NG_TYPE =ZIP
I NTERCHANGE_FORVAT = Bl NARY
UNCOVPRESSED FI LE_NAME = {"0101_SHF. DAT", "0101_SHF. LBL"}
REQUI RED_STORAGE_BYTES = 34560
ADESCRI PTI ON = "ZI PI NFO TXT"

END_OBJECT = COWPRESSED FI LE

CBJECT = UNCOMPRESSED _FI LE
FI LE_NAME = "0101_SHF. DAT"
RECORD_TYPE = FI XED_LENGTH

20-4

RECORD_BYTES
FI LE_RECORDS
FI TS_HEADER
"HEADER _TABLE

Chapter 20. Zip Compression

2880

12

(" 0101_SHF. DAT",
(" 0101_SHF. DAT",

1 <BYTES>)
25921 <BYTES>)

OBJECT = FI TS_HEADER
HEADER TYPE = FITS
| NTERCHANGE _FORMAT = ASCI |
RECORDS =7
BYTES = 20160
ADESCRI PTI ON = "FI TS. TXT"
END_OBJECT = FI TS_HEADER
OBJECT = HEADER TABLE
NAME = HEADER PACKET
| NTERCHANGE _FORMAT = Bl NARY
ROWNS = 965
COLUWNS =1
ROW BYTES =2
DESCRI PTI ON = "This is the HST standard header packet
cont ai ni ng observation parameters. It is
stored as a sequence of 965 two-byte
integers. For nore detailed information,
contact Space Tel escope Science Institute.”
OBJECT = COLUW
NAME = PACKET_VALUES
DATA _TYPE = MSB_I| NTEGER
START_BYTE =1
BYTES =2
END_OBJECT = COLUW
END_OBJECT = HEADER TABLE
END_OBJECT = UNCOWPRESSED FI LE
END

20.5 ZIPINFO.TXT Example

While the ZIPINFO.TXT fileis not required, it is strongly recommended that this file be
included as part of the process of documenting the contents of azip file. Thefollowingisan
example ZIPINFO.TXT file and the type of information that should be included in the
ZIPINFO.TXT file:

PDS_VERSI ON_I D = PDS3
RECORD_TYPE = STREAM
OBJECT = TEXT
PUBLI CATI ON_DATE = 1999-07- 26
NOTE = "This file provides an overview of the ZIP
file format."
END_OBJECT = TEXT

Chapter 20. Zip Compression 20-5

END

Many of the files in this data set are conpressed using Zip fornat.
They are all indicated by the extension ".ZIP'. ZIPis a utility that
conpresses files and also allows for multiple files to be stored in a
single Zip archive. You will need the UNZIP utility to extract the
files.

The SOFTWARE directory on this volume contains a conplete description
of the Zip file format and al so the conplete source code for the UNZI P
utility. The file format and file deconpression algorithns are
described in the file SOFTWARE/ APPNOTE. TXT.

It is far sinpler to obtain a pre-built binary of the UNZIP application
for your platform Binaries for nost platforns are available fromthe
Info-ZIP web site, currently at these URLs:

http://ww. i nfo-zip.org/pub/infozip
http://ww. freesoftware. com pub/infozip

The same information can al so be found a the PDS Central Node's web
site, currently at:

http://pds.jpl. nasa. gov/

20.6 Additional Files

As of thiswriting, Zip appears to be arobust standard with a long future of general use.
Nevertheless, PDS long-term archiving goals reach well past the lifetime of many popular
standards, past and present. For this reason, any volume containing zip filesis required to
contain a compl ete description of the zip file format with sample “Unzip” source code. This
information must be located in an appropriate subdirectory of the SOFTWARE directory tree.
The required text and source code may be obtained directly from the Info-Zip web site or by
contacting a Central Node data engineer.

20-6

COMPRESSED FILE, 20-2
data compression, 20-1
Zip, 20-1
example, 20-3
file format, 20-1
on archive volumes, 20-3
DOCUMENT subdirectory, 20-2
ENCODING TYPE, 20-1
FILE object, 20-2
IMAGE objects
compression, 20-1
minimal labels
and compressed data, 20-2
REQUIRED STORAGE BYTES, 20-3
UNCOMPRESSED FILE, 20-2
UNCOMPRESSED FILE NAME, 20-3
Zip compression, 20-1
ZIPINFO.TXT, 20-2, 20-4

Chapter 20. Zip Compression

Appendix A. PDS Data Object Definitions A-1

Appendix A. PDS Data Object Definitions

This section provides an alphabetical reference of approved PDS data object definitions used for
labeling primary and secondary data objects. The definitions include descriptions, lists of required
and optional keywords, lists of required and optional subobjects (or child objects), and one or
more examples of specific objects. For a more detailed discussion on primary and secondary data
objects, see theData Products chapter in this document.

Data object definitions are refined and augmented from time to time, as user community needs
arise, so object definitions for products designed under older versions of the Standards may differ
significantly. To check the current state of any object definition, consult a PDS data engineer or
either of these URLSs:

PDS Catalog Search: ~ http://pdsproto.j pl.nasa.gov/onlinecatal og/top.cfm

Data Dictionary Search: http://pdsproto.jpl.nasa.gov/ddcolstdval/newdd/top.cfm

The examples provided in this Appendix are based on both existing and planned PDS archive
products, modified to reflect the current version of the PDS Standards. Additional examples may
be obtained by contacting a PDS Data Engineer.

NOTE: Any keywords in the Planetary Science Data Dictionary may also beincludedin a
specific data object definition.

Primitive Objects

There exist four primitive data objects: ARRAY; BIT_ELEMENT; COLLECTION; and
ELEMENT. Although these objects are avail able, they should only be used after careful
consideration of the current high-level PDS Data Objects. Please see thePDS Objects chapter in
this document for guidelines on the use of primitive objects.

A-2 Appendix A. PDS Data Object Definitions
Chapter Contents
Appendix A. PDS Data Object DefiNitioNS.........ccocveieriieiiiiees e e A-1
R L I PSSR A-3
A.2 ARRAY (Primitive Data ODJECL).......cccueiiriiiiieiieies erriiesiie e siee e see e eesieessenns A-4
A3 BIT_COLUMN ...ttt ettt sttt teesbessesseeseeteeeeeeeen 2enee A-8
A.4 BIT ELEMENT (Primitive Data ODjECt)ccceeieeriiiiieiiiies eeieeniee e A-11
T 7 I @€ TSRS A-12
A.6 COLLECTION (Primitive Data ODJECL)ccveereeriiiienienie ceeriieseesies e A-15
A O | 11 N SRR A-16
A8 CONTAINER... .ot et saeesaeesseesaeesreesaeesreesaes seeans A-20
A9 DATA PRODUCER.......ccciiitiiiiriiiiinies ceriee e seesee e seesieens seseessessseeseesseesseeas A-27
A 10 DATA _SUPPLIER. ... eieiereetieie ettt seesbeesseessesssesssesnseenes A-29
A1l DIRECTORY ...ooiiiiiiiiieiie e siiens ceieesieessesseessessseessessee saesssesssesssesssesssesseesses seens A-31
A 12 DOCUMENT ...ttt criee et see saeesaeesseesaeesseesseesseesnes seesns A-33
A.13 ELEMENT (Primitive Data ObJECL)ccooeeiiereeiieiieiis creerieesiee et e A-36
N I SRR A-38
A.15 GAZETTEER _TABLE ..ot et eeenee e A-42
ALE HEADER ...t ettt e ete et naes reereenes A-52
A.L7 HISTOGRAM ..ottt ettt erteesiee e sreeste e s e e see sbeesseesseesseesseesseesseanses eens A-54
AL8 HISTORY ..ottt ettt ettt te sbeesseesbeesbeesseenbeenseetes eesseeses A-57
ALLD IMAGE ... e —eetee e e e e e e et sareesreesreens A-61
A.20 INDEX _TABLE......o o et eesstesneesseesneesneesneesneean s A-66
A R N I I I SRR A-71
A.22 QUBE ...t s e e nres eeseeseeaneaas A-74
A28 SERIES e et e e e s sareesreesreen A-82
A.24 SPECTRUMoiiiiiiii et ettt es eestesteseeseeeneesneesseens seeenes A-87
A.25 SPICE KERNELooiiiiiiiiisiieiiesiies ettt s srseesseesseesseesseesseeseeenes A-90
A.26 TABLE. ..t s e teeteereateas A-93
A A 1 = G RS A-114
A28 VOLUME ...ttt ettt ste saeesseesseesseesaeesseesaeesnes eesneens A-116

Appendix A. PDS Data Object Definitions A-3

A.l ALIAS

The ALIAS object provides a method for identifying alternate terms or names for approved data
elements or objects within adata system. The ALIAS object is an optiona sub-object of the
COLUMN object

A.1.1 Required Keywords

1. ALIAS NAME
2. USAGE_NOTE

A.1.2 Optional Keywords

Any

A.1.3 Required Objects

None

A.1.4 Optional Objects

None

A.1l5 Example

The following label fragment shows the ALIAS object included as a sub-object of a COLUMN:

OBJECT = COLUWN
NAVE = ALT_FOOTPRI NT_LONG TUDE
START_BYTE =1
DATA_TYPE = REAL
BYTES = 10
OBJECT = ALI AS

ALl AS_NAVE = AR_LON
USAGE_NOTE = "MAGELLAN M T ARCDR SI S"

END_OBJECT = ALI AS

END_OBJECT = COLUWN

A-4 Appendix A. PDS Data Object Definitions

A.2 ARRAY (Primitive Data Object)

The ARRAY objectis provided to describe dimensioned arrays of homogeneous objects. Note
that an ARRAY may contain only a single sub-object, which can itself be another ARRAY or
COLLECTION if required. A maximum of 6 axesis allowed in an ARRAY . By default, the
rightmost axis is the fastest varying axis.

The optional “ AXIS *” elements are used to describe the variation between successive objects
inthe ARRAY . Valuesfor AXIS ITEMS and “ AXIS *” dements for multidimensional arrays
arelisted in axis order. The optional START_BYTE data element provides the starting location
relative to an enclosing object. If aSTART_BYTE is not specified, avalue of 1 is assumed.

A.21 Required Keywords

1. AXES
2. AXIS ITEMS
3. NAME

A.2.2 Optional Keywords

1. AXIS INTERVAL

2. AXIS NAME

3. AXIS UNIT

4. AXIS START

5. AXIS STOP

6. AXIS ORDER TYPE

7. CHECKSUM

8. DESCRIPTION

9. INTERCHANGE_FORMAT
10. START BYTE

A.2.3 Required Objects
None

Note that while no specific sub-object is required, the ARRAY object must contain at least one of
the optional objects, following. That is, anull ARRAY object may not be defined.

Appendix A. PDS Data Object Definitions

A.24 Optional Objects

ARRAY
BIT_ELEMENT
COLLECTION
ELEMENT

PwdD PR

A.25 Examplel

A-5

Following is an example of atwo-dimensional spectrum array in a detached labdl.

PDS_VERSI ON_| D
RECORD_TYPE
RECORD _BYTES
FI LE_RECORDS

DATA SET I D
OBSERVATI ON_| D
TARGET _NAME

| NSTRUVENT _HOST_NAVE

| NSTRUVENT _NANE
PRODUCT | D

OBSERVATI ON_TI ME
START_TI ME

STOP_TI ME

PRODUCT _CREATI ON_TI MVE
A ARRAY

/* Description of (bject

OBJECT
NAVE
| NTERCHANGE _FORVAT
AXES
AXI'S_| TEMB
AXI'S_NAVE
AXIS UNIT
AXI'S_I NTERVAL
AXI' S_START

OBJECT
DATA_TYPE
BYTES
NAME
DERI VED_NAXI MUM
DERI VED_ M NI MUM
OFFSET

in Fil

PDS3

FI XED_LENGTH
1600

180

"I HW G- SPEC- 2- EDR- HALLEY- V1. 0"

"704283"

"HALLEY"

" | HW SPECTROSCOPY AND SPECTROPHOTOVETRY
NETWORK"

" | HW SPECTROSCOPY AND SPECTROPHOTOVETRY"
"704283"

1986- 05- 09T04: 10: 20. 640Z

1986- 05- 09T04: 07: 50. 640Z

UNK

1993-01-01TOO: 00: 00. 000Z

" SPEC2702. DAT"

e */

ARRAY
"2D SPECTRUM

Bl NARY

2

(180, 800)

("RHO', " APPROXI MATE WAVELENGTH')
(ARCSEC, ANGSTROVE)

(1.5,7.2164)

(1.0,5034. 9)

ELEVENT
MSB_| NTEGER
2

COUNT

2. 424980E+04
0. O00000E+00
0. O00000E+00

A-6

A.2.6

SCALI NG_FACTOR

NOTE

END_OBJECT
END_CBJECT
END

Example 2

Appendix A. PDS Data Object Definitions

1. 000000E+00

"Conversion factor 1.45 may be applied
to data to estimate photons/sq

n sec/ angstrom at 6800 angstrons."
ELEMENT

ARRAY

The following label shows ARRAY, COLLECTION and ELEMENT primitive objects al used
together.

PDS_VERSI ON_| D
RECORD TYPE
RECORD _BYTES

FI LE_RECORDS

NARRAY

DATA SET I D
TARGET _NAME
SPACECRAFT_NAVE
| NSTRUVENT _NANE
PRODUCT | D
START_TI ME
STOP_TI ME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

NOTE

CBJECT
NANME

I NTERCHANGE_FORVAT

AXES
AXI S_| TEMS
DESCRI PTI ON

OBJECT
NAME
BYTES
DESCRI PTI ON

OBJECT
NAVE
BYTES
DATA_TYPE
START _BYTE

PDS3
FI XED_LENGTH
122
7387

"M SCHAO1. DAT"

"VEGAL- G- M SCHA- 3- RDR- HALLEY- V1. 0"
HALLEY

"VEGA 1"

" MAGNETOVETER!

" Y7

" UNK"

" UNK"

" UNK"

" UNK"

"VEGA 1 M SCHA DATA"

ARRAY

M SCHA _DATA FI LE

Bl NARY

1

7387

"This file contains an array of fixed-
l ength M scha records."

COLLECTI ON

M SCHA_RECORD

122

"Each record in this file consists of a
time tag foll owed by a 20-el enment array
of magnetic field vectors.™

ELEVENT
START_TI ME
2

MSB_| NTECER
1

Appendix A. PDS Data Object Definitions

END_OBJECT

OBJECT
NAVE
AXES
AXI'S_| TEMB
START _BYTE
AXI'S_NAVE
AXIS UNIT
AXI'S_I NTERVAL
DESCRI PTI ON

OBJECT
NAVE
BYTES
DATA_TYPE
START_BYTE
END_OBJECT
END_OBJECT

END_CBJECT

END_CBJECT
END

A-7

ELEVENT

ARRAY

MAGNETI C FI ELD ARRAY

2

(3,20

3

(" XYZ_COVPONENT", "TI ME")

("N A" , " SECOND")

("N A" , 0.2)

"Magnetic field vectors were recorded at
the rate of 10 per second. The

START _TIME field gives the tine at
which the first vector in the record
was recorded. Successive vectors were
recorded at 0.2 second intervals."

ELEMVENT
MAG_FI ELD_COVPONENT VALUE
2

MSB_| NTEGER

1

ELEMVENT

ARRAY

COLLECTI ON

ARRAY

A-8 Appendix A. PDS Data Object Definitions

A3 BIT_COLUMN

The BIT_COLUMN object identifies astring of bits that do not fall on even byte boundaries and
therefore cannot be described as adistinct COLUMN. BIT_COLUMNSs defined within columns
are analogous to columns defined within rows.

Notes:

(1) The Planetary Data System recommends that all fields (within new objects) be defined on
byte boundaries. This precludes having multiple values strung together in bit strings, as
occursinthe BIT_COLUMN object.

(2) BIT_COLUMN isintended for use in describing existing binary data strings, but i s not
recommended for use in defining new data objects because it will not be recognized by
most general purpose software.

(3) A BIT_COLUMN must not contain embedded objects.

BIT_COLUMNSs of the same format and size may be specified asasingle BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_OFFSET elements. The ITEMS data e ement is used
to indicate the number of occurrences of a bit string.

A.3.1 Required Keywords

NAME

BIT_DATA_TYPE

START_BIT

BITS (required for BIT_COLUMNSs without items)
DESCRIPTION

agrwhpE

A.3.2 Optional Keywords

BIT_MASK

BITS (optional for BIT_COLUMNSswith ITEMS)
FORMAT

INVALID_CONSTANT

ITEMS

ITEM_BITS

ITEM_OFFSET

MINIMUM

. MAXIMUM

0. MISSING_CONSTANT

HBoOoo~NoOA~®ODNE

Appendix A. PDS Data Object Definitions

11. OFFSET

12. SCALING_FACTOR

13. UNIT

A.3.3 Required Objects
None

A.3.4 Optional Objects
None

A.35 Example

The label fragment below was extracted from a larger example which can be found under the
CONTAINER object. The BIT_COLUMN object can be a sub-object only of a COLUMN object,
but that COLUMN may itself be part of a TABLE, SPECTRUM, SERIES or CONTAINER

object.

OBJECT
NAVE
DATA_TYPE
START _BYTE
BYTES
VALI D_M NI MUM
VALI D_MAXI MUM
DESCRI PTI ON

OBJECT
NAVE
Bl T_DATA_TYPE
START BI T
BI TS
M NI MUM
MAXI MUM
DESCRI PTI ON

END_CBJECT

COLUWN
PACKET | D
LSB_BI T_STRI NG
1

2
0
7
"Packet id constitutes one of three
parts in the primary source information
header applied by the Payl oad Data
System (PDS) to the MOLA tel enetry
packet at the time of creation of the

packet prior to transfer frane
creation.”

Bl T_CCOLUWN

VERSI ON_NUMBER
M5B_UNSI GNED_| NTECGER
1

3
0
7
"These bits identify Version 1 as the
Source Packet structure. These bits

shall be set to '000'."
Bl T_COLUWN

A-10 Appendix A. PDS Data Object Definitions

OBJECT = Bl T_CCLUWN
NAME = SPARE
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BI T =4
BI TS =1
M NI MUM =0
MVAXI MUM =0
DESCRI PTI ON = "Reserved spare. This bit shall be set
to'o"
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCLUWN
NAME = FLAG
Bl T_DATA TYPE = BOCOLEAN
START_BI T =5
BI TS =1
M NI MUM =0
MVAXI MUM =0
DESCRI PTI ON = "This flag signals the presence or
absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to '0" since no
Secondary Header formatting standards
currently exist for Mars Cbserver."
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCLUWN
NAME = ERROR_STATUS
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BIT =6
BI TS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "This field identifies in part the
i ndi vidual application process wthin
t he spacecraft that created the Source
Packet data."
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCLUWN
NAME = | NSTRUMENT_I D
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BI T =9
BI TS =8
M NI MUM = "NA"
MAXI MUM = "NA"
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that created the Source
Packet data. 00100011 is the bit
pattern for MOLA."
END_OBJECT = Bl T_CCOLUWN
END_OBJECT = COLUW

Appendix A. PDS Data Object Definitions A-11

A.4 BIT ELEMENT (Primitive Data Object)

Under review.

A-12 Appendix A. PDS Data Object Definitions

A5 CATALOG

The CATALOG objectis used within aVOLUME abject to reference the completed PDS high-
level catalog object set. The catalog object set provides additional information related to the data
sets on avolume. Please refer to the File Specification and Naming chapter in this document for
more information.

A5.1 Required Keywords

None

A.5.2 Optional Keywords

1. DATA_SET_ID
2. LOGICAL_VOLUME PATHNAME
3. LOGICAL_VOLUMES

A.5.3 Required Objects

DATA_SET
INSTRUMENT
INSTRUMENT_HOST
MISSION

pwWDd PR

A.54 Optional Objects

DATA_SET_COLLECTION
PERSONNEL
REFERENCE

TARGET

pwWDd PR

A55 Example

The example below isaVOLDESC.CAT file for a volume containing multiple data sets. In this
case, the catalog objects are provided in separate files referenced by pointers.

PDS_VERSI ON_| D = PDS3
LABEL_REVI S| ON_NOTE ="1998-07-01, S. Joy (PPI);"
RECORD_TYPE = STREAM

Appendix A. PDS Data Object Definitions

OBJECT
VOLUME_SERI ES_NAVE
VOLUME_SET_NANME

VOLUME_SET I D
VOLUMES
VOLUNVE_NAME

VOLUME_| D
VOLUME_VERSI ON_| D
VOLUVE_FORVAT

MEDI UM TYPE

PUBLI CATI ON_DATE
DESCRI PTI ON

DATA SET I D

OBJECT
I NSTI TUTI ON_NAME
FACI LI TY_NAME

A-13

VOLUME

"VOYAGERS TO THE QUTER PLANETS'
"VOYAGER NEPTUNE PLANETARY PLASNA

| NTERACTI ONS DATA"

USA NASA PDS_ VG 1001

1

"VOYAGER NEPTUNE PLANETARY PLASNA

| NTERACTI ONS DATA"

VG 1001

"VERSI ON 1"

"1 SO 9660"

1992-11-13

"This volunme contains a collection of
non-i magi ng Pl anetary Pl asna datasets
fromthe Voyager 2 spacecraft encounter
with Neptune. Included are datasets
fromthe Cosmic Ray System (CRS),

Pl asma System (PLS), Plasma Wave System
(PW5), Planetary Radio Astronony (PRA),
Magnet onreter (MAG, and Low Ener gy
Charged Particle (LECP) instruments, as
wel | as spacecraft position vectors
(POS) in several coordinate systens.
The vol ume al so contai ns docunentati on
and index files to support access and
use of the data."

{"V&- N CRS- 3- RDR- D1- 6SEC- V1. 0",
"V&- N- CRS- 4- SUMWM D1- 96SEC- V1. 0",
"V&- N- CRS- 4- SUMWM D2- 96SEC- V1. 0",
"V@&2- N- LECP- 4- SUMt SCAN- 24SEC- V1. 0",
"V@&2- N- LECP- 4- RDR- STEP- 12. 8M N- V1. 0",
"V&- N- MAG- 4- RDR- HG- COORDS- 1. 92SEC- V1. 0",
"V&- N- MAG- 4- SUMM HG- COORDS- 48SEC- V1. 0",
"V&2- N- MAG- 4- RDR- HG- COORDS- 9. 6SEC- V1. 0",
"VG&- N- MAG- 4- SUMM NLSCOORDS- 12SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- 2PROVAGSPH- 48SEC- V1. 0",
"V@&- N- PLS- 5- RDR- ELEMAGSPHERE- 96SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONVAGSPHERE- 48SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONLMCDE- 48SEC- V1. 0",
"V@&2- N- PLS- 5- RDR- | ONMMCDE- 12M N- V1. 0",
"VGE2- N- PLS- 5- RDR- | ON- | NBNDW ND- 48SEC- V1. 0",
"V@&2- N- PCS- 5- RDR- HGHGCOORDS- 48SEC- V1. 0"
"V@&- N- PCS- 5- SUMM NLSCOORDS- 12- 48SEC- V1. 0",
"V@&- N- PRA- 4- SUVMM BROWGE- SEC- V1. 0",
"V@&2- N- PRA- 2- RDR- Hl GHRATE- 60MV5- V1. 0",
"V@&2- N- PW&- 2- RDR- SA- 4SEC- V1. 0",
"V&2- N- PW&- 4- SUMM SA- 48SEC- V1. 0",
"V&- N- PW&- 1- EDR- WFRM- 60MS- V1. 0"}

DATA_PRCDUCER

"UNI'VERSI TY OF CALI FORNI A, LOS ANGELES'
"PDS PLANETARY PLASNMA | NTERACTI ONS NCDE"

A-14

FULL_NAME
DI SCl PLI NE_NAME
ADDRESS_TEXT

END_CBJECT

OBJECT
| NSTI TUTI ON_NANE
FACI LI TY_NAVE
FULL_NANME
DI SCI PLI NE_NANME
ADDRESS_TEXT

TELEPHONE_NUVBER
ELECTRONI C_MAI L_TYPE
ELECTRONI C_ MAI L_I D

END_OBJECT

CBJECT
M SSI ON_CATALOG
A NSTRUMVENT_HOST_CATALOG
A NSTRUMENT_CATALOG

ADATA_SET_CATALOG

ATARGET _CATALOG
APERSONNEL_ CATALOG
AREFERENCE_CATALOG

END_OBJECT

END_CBJECT
END

Appendix A. PDS Data Object Definitions

"DR RAYMOND WALKER'
" PLASMA | NTERACTI ONS"
"UCLA
| GPP
LGS ANGELES, CA 90024 USA"
DATA_PRCDUCER

DATA_SUPPLI ER
"NATI ONAL SPACE SCI ENCE DATA
"NATI ONAL SPACE SCI ENCE DATA
"NATI ONAL SPACE SCI ENCE DATA
"NATI ONAL SPACE SCI ENCE DATA
"Code 633 \n
Coddard Space Flight Center \n
G eenbel t, Maryland, 20771, USA"
"3012866695"
" NSI / DECNET"
" NSSDCA: : REQUEST"
DATA_SUPPLI ER

CENTER"
CENTER"
CENTER"
CENTER"

CATALOG

"M SSI ON. CAT"

"I NSTHOST. CAT"

{" CRS_I NST. CAT",
"LECPI NST. CAT",
"MAG_I NST. CAT",
"PLS_I NST. CAT",
"PRA_I NST. CAT",
"PW5_| NST. CAT" }

{" CRS_DS. CAT",
"LECP_DS. CAT",
"MAG_DS. CAT",
"PLS_DS. CAT",
"POS_DS. CAT",
"PRA_DS. CAT",
"PW5_DS. CAT"}

TARCET. CAT

PERSON. CAT

REF. CAT

CATALOG

VOLUME

Appendix A. PDS Data Object Definitions A-15

A.6 COLLECTION (Primitive Data Object)

The COLLECTION object allows the ordered grouping of heterogeneous objects into a structure.
The COLLECTION object may contain a mixture of different object types, including other
COLLECTIONSs. The optional START_BY TE data el ement provides the starting location
relative to an enclosing object. If aSTART_BYTE is not specified, avalue of 1 is assumed.

A.6.1 Required Keywords

1. BYTES
2. NAME

A.6.2 Optional Keywords

DESCRIPTION
CHECKSUM
INTERCHANGE_FORMAT
START_BYTE

Pwd PR

A.6.3 Required Objects

None

Note that although a specific sub-object is not required, the COLLECTION must contain at least
one of the optional objectslisted following. That is, anull COLLECTION may not be defined.

A.6.4 Optional Objects

ELEMENT
BIT_ELEMENT
ARRAY
COLLECTION

PwWdD PR

A.6.5 Example

Please refer to Section A.2.6, Example 2 under the ARRAY object for an illustration of the
COLLECTION object used in conjunction with other primitive objects.

A-16 Appendix A. PDS Data Object Definitions

A.7 COLUMN

The COLUMN object identifies a single column in a data object.

Notes:
(1) Current PDS data objects that include COLUMN objects arethe TABLE,
CONTAINER, SPECTRUM and SERIES objects.

(2) COLUMNSs must not themselves contain embedded COLUMN objects.

(3) COLUMNSs of the same format and size which constitute a vector may be specified as a
single COLUMN by using the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements.
The ITEMS data dement indicates the number of occurrences of thefield (i.e., elements
in the vector).

(4) BYTESandITEM_BYTES counts do not include leading or trailing delimitersor line
terminators.

(5) ForaCOLUMN containing ITEMS, the value of BY TES should represent the total size
of the column including delimiters between the items. (See examples 1 and 2 below.)

A.7.1 Required Keywords

NAME

DATA_TYPE

START_BYTE

BYTES (required for COLUMNSs without ITEMS)

PwWDdD PR

A.7.2 Optional Keywords

BIT_MASK

BYTES (optional for COLUMNSs with ITEMS)
COLUMN_NUMBER

DERIVED _MAXIMUM
DERIVED_MINIMUM

DESCRIPTION

FORMAT

INVALID _CONSTANT

ITEM_BYTES

10. ITEM_OFFSET

11. ITEMS

12. MAXIMUM

13. MAXIMUM_SAMPLING_PARAMETER
14. MINIMUM

CoNoOOA~WDN R

Appendix A. PDS Data Object Definitions A-17

15. MINIMUM_SAMPLING_PARAMETER
16. MISSING_CONSTANT

17. OFFSET

18. SAMPLING_PARAMETER_INTERVAL
19. SAMPLING_PARAMETER_NAME

20. SAMPLING_PARAMETER_UNIT

21. SCALING_FACTOR

22. UNIT

23.VALID_MAXIMUM
24.VALID_MINIMUM

A.7.3 Required Objects

None

A.7.4 Optional Objects

1. BIT_COLUMN
2. ALIAS

A.75 Examplel

The labd fragment below shows a simple COLUMN object, in this case from an ASCIlI TABLE.

CBJECT = COLUW
NANME = "DETECTOR TEMPERATURE"
START_BYTE = 27
BYTES =5
DATA_TYPE = ASCI | _REAL
FORNVAT = "F5.1"
UNIT = "KELVI N'
M SSI NG_CONSTANT = 999.9
END_OBJECT = COLUW

A.7.6 Example?2

The fragment below shows two COLUMNS containing multipleitems. The first COLUMN isa
vector containing three ASCIl_INTEGER items: XX, yy, zz. The second COLUMN contains
three character items: “xx”, “yy” and “zz". Note that the value of BY TES includes the comma
delimiters between items, but the ITEM_BY TES value does not. The ITEM_OFFSET isthe
number of bytes from the beginning of one item to the beginning of the next.

CBJECT
NANME

COLUWN
COLUWNLXYZ

A-18

DATA_TYPE
START _BYTE
BYTES
| TEMS
| TEM BYTES
| TEM OFFSET

END_OBJECT

OBJECT
NAVE
DATA_TYPE
START _BYTE
BYTES

| TEMS
| TEM BYTES

| TEM_OFFSET
END_OBJECT

A.7.7 Example3

Appendix A. PDS

ASCI | _| NTEGER

1

8 /*includes delimters*/

3

2

3

COLUWN

COLUWN

COLUMN2 XYZ

CHARACTER

2 /* val ue does not include

12 /* val ue does not include
[* trailing quotes */

3

2 /* val ue does not include
[* trailing quotes */

5 /* val ue does not include

COLUWN

Data Object Definitions

| eadi ng quote */
| eadi ng and */

| eadi ng and */

| eadi ng quote */

The fragment below was extracted from a larger example which can be found under the
CONTAINER object. It illustrates a single COLUMN object subdivided into several

BIT_COLUMN fields.

CBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
VALI D_M NI MUM
VALI D_NMAXI MUM
DESCRI PTI ON

OBJECT
NAVE
Bl T_DATA_TYPE
START BI T
BI TS
M NI MUM
MAXI MUM
DESCRI PTI ON

END_CBJECT

COLUWN
PACKET | D
LSB_BI T_STRI NG
1

2

0

7

"Packet id constitutes one of three

parts in the
i nformati on header appl

primary source

ed by the

Payl oad Data System (PDS) to the MOLA

tel enetry packet at the

time of

creation of the packet prior to

transfer franme creation

Bl T_COLUWN

VERSI ON_NUMBER

VBB _UNSI GNED | NTEGER

1

3

0

7

"These bits identify Ver
Sour ce Packet structure.
shall be set to '000'."
Bl T_COLUWN

sion 1 as the
These bits

Appendix A. PDS Data Object Definitions A-19

OBJECT = Bl T_CCOLUWN
NAME = SPARE
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BI T =4
BI TS =1
M NI MUM =0
MVAXI MUM =0
DESCRI PTI ON = "Reserved spare. This bit shall be set
to'o0"
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCLUWN
NAME = FLAG
Bl T_DATA TYPE = BOCOLEAN
START_BI T =5
BI TS =1
M NI MUM =0
MAXI MUM =0
DESCRI PTI ON = "This flag signals the presence or
absence of a Secondary Header data
structure within the Source Packet.
This bit shall be set to '0" since no
Secondary Header formatting standards
currently exist for Mars Cbserver."
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCOLUWN
NAME = ERROR_STATUS
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BI T =6
BI TS =3
M NI MUM =0
MAXI MUM =7
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that created the Source
Packet data."
END_OBJECT = Bl T_CCLUWN
OBJECT = Bl T_CCLUWN
NAME = | NSTRUMENT_I D
Bl T_DATA TYPE = MSB_UNSI GNED_| NTEGER
START_BIT =9
BI TS =8
M N MUM = "NA"
VAXI MUM = "NA"
DESCRI PTI ON = "This field identifies in part the
i ndi vi dual application process within
t he spacecraft that creeated the Source
Packet data. 00100011 is the bit
pattern for MOLA."
END_OBJECT = Bl T_CCOLUWN
END_OBJECT = COLUW

A-20 Appendix A. PDS Data Object Definitions

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNS that repeat
within adata object (such asa TABLE). Use of the CONTAINER object allows repeating groups
to be defined within a data structure.

A.8.1 Required Keywords

NAME
START_BYTE
BYTES
REPETITIONS
DESCRIPTION

agrwhpE

A.8.2 Optional Keywords

Any

A.8.3 Required Objects

None

A.84 Optional Objects

1. COLUMN
2. CONTAINER

A.85 Example

The set of labels and format fragments below illustrates a data product layout in which the
CONTAINER object is used. The primary data product isa TAB